
15-112
Fall 2018 Midterm 2
November 15, 2018

Name:

Andrew ID:

Recitation Section:

� You may not use any books, notes, extra paper, or electronic devices during this exam.
There should be nothing on your desk or chair aside from this exam and any writing
implements.

� You may not ask questions about the exam except for language clarifications.

� Show your work on the exam to receive credit.

� You may use the backs of pages as scratch paper. Nothing written on the back of
any pages will be graded.

� You may complete the problems in any order you’d like; you may wish to start with
the free response problems, which are worth most of the credit.

� All code samples run without crashing unless we state otherwise.

� You may assume that os, math, string, tkinter, random, and copy are imported; do not
import any other modules.

Don’t write anything in the table below.

Question Points Score

1 12

2 12

3 8

4 10

5 8

6 10

7 20

8 20

9 2

Total: 102

15-112 Fall 2018 Midterm 2 November 15, 2018

1. Short Answer

Answer each of the following questions. Read the instructions carefully! For multiple
choice questions, you MUST fill in the bubbles ENTIRELY.

(a) (1 point) A filesystem is a naturally recursive data structure, and therefore has a
base case and a recursive case in the data representation. Using only one word in
each answer, what is a filesystem’s:

Base case?

Recursive case?

(b) (2 points) Fill in the circles for all of the following statements which are correct
according to our definitions of inheritance, classes, and instances.

A class is like a template, while an instance is like a specific object.

Dog could be a superclass of Animal.

Different instances of a class have different methods.

Shirt could be a subclass of Clothing.

(c) (1 point) Assume that you’re implementing side-scrolling as shown on the course
website, with scrollX and scrollY (abbreviated here as sX and sY). If a circle is
at position x,y with radius 5 in the main world map, how should it be drawn in
redrawAll? Choose only one response.

canvas.create_oval(x-5, y-5, x+5, y+5)

canvas.create_oval(x-5 - sX, y-5 - sY, x+5 - sX, y+5 - sY)

canvas.create_oval(x-5 + sX, y-5 + sY, x+5 + sX, y+5 + sY)

canvas.create_oval(sX - (x-5), sY - (y-5), sX - (x+5), sY - (y+5))

(d) (2 points) Select all the valid reasons why you may want to use a wrapper function
for a recursive problem:

Separate out the recursive logic from any other logic to improve clarity of
code

It eliminates the need for recursion entirely

It can allow you to initialize extra variables you might want to use for the
recursive logic

You shouldn’t use wrapper functions - it is always better style to use default
parameters instead

Page 1 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

(e) (3 points) Consider the H-Fractal shown below. The leftmost figure is the fractal at
depth 0. Assume that the base case of its recursive function draws one ”H” shape.

(i) How many recursive calls to hFractal() are made in the recursive case? Choose
only one response.

1

4

5

None of the above

(ii) Select all the necessary inputs to the recursive function, based on our fractal
demonstrations. Assume you may not use any input not on this list.

X and Y coordinates for the center of the H

Height of the H

Number of H shapes that already exist

Depth (or level)

(f) (3 points) The following three questions have to do with hash functions and sets.
Choose only one answer for each.

(i) What is a hash function?

A function that turns a mutable data type into an immutable data type

A function that turns an immutable value into an integer

A function that places an object into a set or dictionary

A function that finds a value in a list in constant time

(ii) How is a hashed item put into a set?

The hash value is used to create an index into a list, and the item is
placed in an inner list at that index

The hash value is placed into the set instead of the item

The hash value is stored as a key and the item is stored as a value, just
like in a dictionary

The hash value and item are appended to the end of the set in a tuple

(iii) How is it possible to see if an item is in a set in O(1) time?

Since a set has a constant size, we can scan the entire set in O(1) time

We can hash the item again, and it’s faster to look up the hash value
than the original item, allowing us to search the set in O(1) time

Hashing the item will tell us which index to look into, and we can
search the inner list in O(1) time

We can’t see if an item is in a set in O(1) time

Page 2 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

2. Code Tracing

Indicate what each piece of code will print. Place your answer (and nothing else) in the
box below each piece of code.

(a) (4 points) CT 1

def ct1(s, lst):

if s in lst:

print(s, "repeat!")

return

else:

lst.append(s)

if len(s) == 1:

print(s)

else:

if len(s) == 3:

print("\n3:", s)

ct1(s[1:], lst)

ct1(s[:-1], lst)

ct1("woah", [])

Page 3 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

(b) (4 points) CT 2

import copy

def ct2(lst):

d={}

for i in range(len(lst)//2):

d[lst[i]]=lst[i*2]

print(d)

d[None]={0}

for i in lst:

if i not in d:

d[None].add(i)

print(d[None])

b=copy.deepcopy(d)

for i in b:

if type(d[i]) not in {set, list, tuple}:

if d[i] in d:

del d[i]

del d[None]

print(d)

return len(d)

lst=['x','x','y','z',4,5,6,6]

print(ct2(lst))

Page 4 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

(c) (4 points) CT 3

def ct3(lst,x):

L=0

R=len(lst)-1

while L<=R:

i=(L+R)//2

if lst[i]==x:

return i

elif lst[i]<x:

L=i+1

else:

R=i-1

print(lst[L:R+1])

return -1

lst=[0,2,3,3,6,7,9,13,14,17,18]

print(ct3(lst,5))

Page 5 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

3. Reasoning Over Code

For each function, find parameter values that will make the function return True. Place
your answer (and nothing else) in the box below each block of code.

(a) (4 points) ROC 1: Find parameter values that will make the function roc1 return
True. Place your answer (and nothing else) in the box below.

def roc1(lst):

assert(isinstance(lst,list) and len(lst)==8)

s=set()

i=0

while len(lst)>i:

if lst[i] in s:

i+=1

else:

s.add(lst.pop(i))

assert(len(s)-len(lst)==2)

for i in s:

if i in lst:

lst.remove(i)

return(lst==["Z"])

Page 6 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

(b) (4 points) ROC 2: Find parameter values that will make the function roc2 return
True. Place your answer (and nothing else) in the box below.

def r1(x, y):

if x<10:

return [x,y]

else:

return r1(x%10,y+1)+r2(x//10,y+1)

def r2(x, y):

if x<10:

return [x,y]

else:

return r1(x//10,y+1)+r2(x%10,y+1)

def roc2(x):

assert(isinstance(x,int))

assert(100<x<999)

return r1(x,x%10)==[5,6,3,7,1,7]

Page 7 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

4. (10 points) Big-O: For each function shown below, write next to each line of the function
either the Big-O runtime of the line or the number of times the line loops. Then write
the total Big-O runtime of the function in terms of N in the box to the right of the code.
All answers must be simplified- do not include lower-order terms! For full
credit, you must include line-by-line Big-O.

Built-in Big-O Runtimes
General Strings

len(item) O(1) chr(s) / ord(s) O(1)
item[i] O(1) s.count(c) O(N)
c in item (for strings and lists) O(N) s.find(c) O(N)

1: def bigO1(L): # L is a list of length N # Big-O

2: x = y = z = 0 #______

3: for i in range(len(L)//2): #______

4: x += L[i] #______

5: for j in range(0, len(L), len(L)//2): #______

6: y += L[j] #______

7: k = len(L) - 1 #______

8: while k > 0: #______

9: z += L[k] #______

10: k = k // 2 #______

11: return (x - y) / z #______

1: import string

2: def bigO2(s): # s is a string of length N # Big-O

3: x = 0 #______

4: for c in s: #______

5: nextC = chr(ord(c) + 1) #______

6: if c in string.digits: #______

7: x += s.count(c) #______

8: elif nextC in s: #______

9: x -= s.find(nextC) #______

10: return x #______

1: def bigOh3(L): # L is a list of length N # Big-O

2: x = 0 #______

3: n = len(L) #______

4: for i in range(n): #______

5: if i > n/2: #______

6: for j in range(n**2): #______

7: if i == j and i in L: #______

8: x += 1 #______

9: return x #______

Page 8 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

5. (8 points) Free Response: getItemCounts

Write the function getItemCounts(lst) which takes a list of values and returns a dic-
tionary mapping each value in the list to the number of times it appears. For example,

getItemCounts(["a", "b", "c", "a", "a", "c"])

would return

{"a" : 3, "b" : 1, "c" : 2}

Your solution must use recursion. If you use any loops, comprehensions, or
iterative functions, you will receive no points on this problem.

Page 9 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

6. (10 points) Free Response: Circle Animation

Assuming the run() function is already written for you, write the timerFired(d) func-
tion for the following animation. init(d) and redrawAll(c, d) have already been
implemented for you; the code is included below. Do not modify these functions.

1. Every second, a circle is added to the screen. The circle should be placed in a
random location on the screen and should have a radius of 20. The number 0
should be displayed in the middle of the circle.

2. All circles on the screen move to the right continuously. As soon as a circle moves
entirely off the screen, it reappears on the left side, still moving to the right. Every
time a circle wraps around the screen in this way, the number in the middle of the
circle should increase by one.

Make reasonable assumptions for anything not specified here. Do not hardcode values for
the width or height. We recommend that, to save time writing, you abbreviate canvas,
event, and data: use c, e and d, respectively. You should use short variable names.

Starter code

def init(d):

d.timerDelay = 100

d.timePassed = 0

d.circles = []

def redrawAll(c, d):

for circle in d.circles:

x, y, count = circle

c.create_oval(x - 20, y - 20, x + 20, y + 20)

c.create_text(x, y, text=str(count))

Page 10 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

Additional Space for Answer to Question 6

Page 11 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

7. (20 points) Free Response: OOP

Write a set of classes so that they pass the following test cases. Your classes should
include Bird and Chicken, but are not limited to these two. You may not hardcode any
test cases. For full credit you must use inheritance appropriately.

###Make a bird named Steve

b = Bird("Steve",5)

assert(b.name=="Steve")

assert(b.size==5)

assert(b.fly()=="can fly")

#Feed Steve

b.feed(2)

assert(b.size==7)

assert(repr(b)=="Steve weighs 7oz and can fly")

#Birds can't fly if their size is twice as big as their original size!

b.feed(4)

assert(b.size==11)

assert(b.fly()=="can't fly")

#Birds are equal if they have the same name and size

b2=Bird("Steve",11)

assert(b==b2)

###Make a chicken named Betty

c = Chicken("Betty")

assert(isinstance(c,Bird))

assert(c.name=="Betty")

assert(c.size==20)

#Chickens can't fly

assert(c.fly()=="can't fly")

assert(repr(c)=="Betty weighs 20oz and can't fly")

#You can still feed chickens though

c.feed(5)

assert(c.size==25)

###Chickens can also lay chicken eggs

e=c.layChickenEgg()

assert(type(e)==ChickenEgg)

assert(isinstance(e,Bird)==False)

###Other birds can't lay chicken eggs though

try:

b.layChickenEgg()

eggLaid=True

except:

eggLaid=False

assert(not eggLaid)

Page 12 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

Additional Space for Answer to Question 7

Page 13 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

Additional Space for Answer to Question 7

Page 14 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

8. (20 points) Free Response: packItems

You’re about to travel home for Thanksgiving, so you need to pack up your stuff! How-
ever, you have so much stuff to bring home that you’ll need to use multiple bags. This is
made more difficult by the fact that each item has a weight, and each bag has a maximum
weight that it can handle- if a bag gets overloaded, it will break. Your task is to find a
way to organize all of your items into all of your bags such that no item is left behind
and no bag contains a heavier weight than its limit.

Solve this problem by writing the function packItems(items, bagSizes). The function
takes two lists: items, which is a list of the weights of all the items, and bagSizes, which
is a list of the weight limits of all the bags. It should return a list of ”bags”, where a bag
is a list of items (numbers). The bag list should be the same length as bagSizes, and
each bag should not weigh more than the corresponding weight limit.

For example, say you have two bags with weight limits of 12 and 9, and the following list
of item weights: [4, 8, 1, 4, 3]. The function call for this would be

packItems([4, 8, 1, 4, 3], [12, 9])

and it would return

[[4, 8], [1, 4, 3]]

Note that the first bag sums to 12 (the first weight limit) while the second sums to 8 (less
than the second weight limit). There are other possible packings for this set of items;
any valid packing is acceptable.

If the provided bag sizes were instead [10, 10], there would be no valid way to pack
the bags; in that case, the function should return None instead of a list of bags. You are
guaranteed that item weights and bag sizes will be non-negative.

Note: You must use recursion and backtracking to solve the problem to
receive credit, even if another approach would work.

Page 15 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

Additional Space for Answer to Question 8

Page 16 of 17 a

15-112 Fall 2018 Midterm 2 November 15, 2018

Additional Space for Answer to Question 8

9. (2 points) Bonus CT: Only try this if you’re done with the other questions and are
bored! Print what the following code prints

def bonusCt():

def f(x,y=[]): return y if x < 2 else y.append(x % (x - 5)) or g(y)

def g(z): return f(14-sum(z)*len(z)) if len(z) <= 2 \

else f(sum([abs(x) for x in z]) % 10)

return eval("".join([str(x) for x in f(7)]))

print(bonusCt())

Page 17 of 17 a

