
Audio In 
Python

Fall ‘18



Modules:
Built-In audio functionality

● PyAudio (record and play audio)

● Aubio (get pitches, beat detection)

● Pydub + Audio Segment (change volume, concat, stack, etc)

More Complex (need to do audio manipulation yourself)

● Analyseffi (mac)

● SoundAnalyse (windows)

● Threading



Common Projects

● Audio/music visualizer

● Sheet music reader

○ Create your own music sheets

● Games using sound input

● Mostly used with other modules to create cool things!



Cool Things You Can Do With Sound

● Pitch Detection

● Beat Detection

● Volume Detection

● Getting rid of noise

● Threading with the rest of your project

● Does anyone have any ideas for audio projects right now?



Past Projects

● Pulse
○ Audio visualizer

○ https://www.youtube.com/watch?v=QLwTMGOUm10

● Composition Software
○ Music composition software

○ https://www.youtube.com/watch?v=P3Qar1B66Yc (basic)

○ https://www.youtube.com/watch?v=yGkZrPUFBc4 (advanced)

● Screaming Bird
○ Funny use of audio

○ https://www.youtube.com/watch?v=6lRaLpRxF9Y

https://www.youtube.com/watch?v=QLwTMGOUm10
https://www.youtube.com/watch?v=P3Qar1B66Yc
https://www.youtube.com/watch?v=yGkZrPUFBc4
https://www.youtube.com/watch?v=6lRaLpRxF9Y


How is music represented digitally: The 
WAV file
● Developed by Microsoft and IBM

● Simpler methods: Sounds are waves

● Why we care: It’s easiest to get PyAudio to work with wav 

files

● Waves have amplitude and frequency

● Amplitude = volume

● Frequency = pitch



Definitions: Chunks and Samples
● Chunk: piece of data storing information about sound

● Chunk size: Size of music data in bytes

● Channel: A singular waveform in autodata (ex: mono, stereo, surround)

● Sample: Scalar value representing amplitude of wave 

● Frame: Snapshot of all samples at a given time

● Sampling Rate: Number of samples of data for each second (44100 Hz)



Some Waves



How to get pitches? DTFT vs. DFT



Time Domain to Frequency Domain



Challenges

● If there is a lot of data, slow computation O(n^2), n outputs, 

each evaluates a sum of n terms
○ Algorithms to make it faster: FFT, fastest at O(nlogn)

■ Cooley-Turkey

■ Prime factor

■ Research them!

● Noise!
○ Your sound data isn’t going to be perfect

○ Minimizing background noise

○ Humans don’t sing perfect pitches



Let’s do a demo!



Analyseffi -- What it Does
-uses numpy and detect_pitch (an internal function from the file analyze.py)

-use pyaudio to store the read CHUNK in a variable (data = stream.read(CHUNK))

-use numpy to properly format data (x = numpy.fromstring(data))

-use detect_pitch to find the frequency being played (freq=detect_pitch(x))

-from here, it is up to you to store the frequency and sort through the raw data



Attendance

https://goo.gl/forms/yas

WOZEk6Dww28VK2

aykilinc@andrew.cmu.edu

https://goo.gl/forms/yasWOZEk6Dww28VK2

