
Name: Recitation: Andrew Id:

15-112 Fall 2018 Quiz 9

Up to 20 minutes. No calculators, no notes, no books, no computers. Show your work!

1. (20 points) For each question, �ll in the circle for all of the answers that are correct. Some questions may
have more than one correct answer.

(a) What is a Class in Python?
A specialized dictionary
A template
A speci�c item
A specialized function

(b) What is an Instance in Python?
A type
A template
A speci�c item
The opposite of Assert

(c) What is a Constructor in Python?
A method that makes an instance
The place where attributes are �rst set up
A generic object that makes an instance
A method called to create new classes

(d) Which of the following can be a superclass of Guitar?
Music
StringInstrument
BassGuitar
Harp

(e) What does it mean for a class to override a method?

It gets the method from its superclass
It gets the method from its subclass
It implements the method multiple times with new arguments
It changes how the method works from the original version

2. (25 points) Free Response: Write the function reduceToStrings(lst) which takes a list of values, lst, and
returns a list containing all of the strings that occurred in lst in their original order of appearance. lst can
contain non-string items (like ints or other lists). For example, reduceToStrings([1, "ab", True, "car"])

would return ["ab", "car"]. Strings inside nested lists should also be ignored; therefore,
reduceToString(["hello", ["what"], "world"]) should return ["hello", "world"].

This function must be written recursively. A solution that uses loops, comprehensions, genera-

tors, or iterative built-in functions such as range will receive no credit.

QUIZ IS ON BOTH SIDES OF THE PAGE a

3. (20 points) Code Tracing: Indicate what the following program prints. Place your answer (and nothing else)
in the box to the right of the code.

def ct(s, depth=0):

print(depth, "in:", s)

if len(s) == 1:

result = s

elif s[0] in "aeiou":

result = ct(s[1:], depth+1)

else:

result = s[0] + ct(s[1:], depth+1)

print(depth, "out:", result)

return result

ct("hope")

QUIZ IS ON BOTH SIDES OF THE PAGE a

4. (35 points) Free Response: Write the classes Vehicle and Car so that they pass the following test cases. You
may not hardcode any test cases. For full credit you must use inheritance appropriately.

A Vehicle has one property: whether or not it is currently moving.

v1 = Vehicle(False)

assert(str(v1) == "Vehicle(False)")

A vehicle can move and brake

v1.move()

assert(str(v1) == "Vehicle(True)")

v1.brake()

assert(str(v1) == "Vehicle(False)")

assert(str(Vehicle(True)) == "Vehicle(True)")

A Car is a vehicle that has an engine. The engine must be on for the car to move

Note that the first param is related to moving; the second checks the engine.

c1 = Car(False, False)

assert(str(c1) == "Car(False,False)") # list the moving state first

ok = False

try: c1.move()

except: ok = True

assert(ok) # move() should crash if the engine isn't on

assert(str(c1) == "Car(False,False)")

c1.startEngine()

assert(str(c1) == "Car(False,True)")

c1.move()

assert(str(c1) == "Car(True,True)")

c1.brake()

assert(str(c1) == "Car(False,True)")

Nothing stops us from making cars with weird start states

assert(str(Car(True, False)) == "Car(True,False)")

Check for inheritance

assert(isinstance(c1, Vehicle) == True)

assert(isinstance(v1, Car) == False)

ok = False

try: v1.startEngine()

except: ok = True

assert(ok) # Vehicles should not have engines

QUIZ IS ON BOTH SIDES OF THE PAGE a

YOU MAY CONTINUE WRITING CODE ON THIS PAGE.

QUIZ IS ON BOTH SIDES OF THE PAGE a

