
Name: Recitation: Andrew Id:

15-112 Spring 2018 Quiz 10
Up to 25 minutes. No calculators, notes, books, or computers. Show your work!

1. (20 points) Code Tracing: Indicate what the following program prints. Place your answers (and nothing else)
in the box to the right of the code.

def ct(s, depth=0):
print(depth, s)
if len(s) > 1 and s[0] != "b":

ct(s[1:], depth+1)
ct(s[:-1], depth+1)

print(depth, "done")

ct("abc")

2. (30 points) Code Writing: Write the function fdp(path) (short for findDuplicateFilenames) that returns a
list of all file names in the given path (or any of its folders, or their folders, etc.) that appear more than once.
Here we are referring to a file’s immediate name, not the full path name. For example, assume we have a
folder called "main". This folder contains two files ("a.txt" and "b.txt") and two folders ("sub" and "also").
"main/sub" contains two files ("a.txt" and "c.txt"), and "main/also" contains two files ("a.txt" and "c.txt").
The function should return ["a.txt", "c.txt"], since "a.txt" appears three times and "c.txt" appears twice. The
order of the returned list does not matter. You may not directly use listFiles(path) in your answer.

a

3. (10 points) Short Answer: Assume that we call mergesort on the list [3,4,1,7,2,6,8,5]. In the recursive imple-
mentation, what are the two lists that are passed to merge in the call at depth 0?

4. (10 points) Short Answer: Say you want to solve a maze using backtracking. You can use the maze represen-
tation we went over in class or make up your own representation. Assuming you use the backtracking template,
what would the possible moves for a step be, and how would you check if they were valid?

5. (10 points) Short Answer: The fractal shown below is an X-Fractal at depth 0 and depth 1. Draw an
X-Fractal at depth 2 in the remaining box.

6. (20 points) Reasoning Over Code: Find an argument for roc that makes it return True. Place your answer
(and nothing else) in the box under the code.

def rocHelper(lst):
if len(lst) <= 1:

return [lst]
else:

sublsts = rocHelper(lst[1:-1])
result = []
for i in range(len(sublsts)):

result += [[lst[0]] + sublsts[i]]
result += [sublsts[i] + [lst[-1]]]

return result
def roc(lst):

result = rocHelper(lst)
return len(lst) == 4 and result == [[3, 2], [2, 4], [3, 1], [1, 4]]

a

YOU MAY CONTINUE WRITING CODE ON THIS PAGE.

a

USE THIS PAGE FOR SCRAP WORK. WORK ON THIS PAGE WILL NOT BE GRADED.

a

