\qquad Recitation: \qquad Andrew Id: \qquad
15-112 Spring 2018 Quiz 2
Up to 20 minutes. No calculators, no notes, no books, no computers. Show your work!

1. (30 points) Code Tracing: Indicate what the following program prints. Place your answers (and nothing else) in the box under the code.
```
def ct1(s):
    a = len(s) - 1
    b = ""
    for i in range(a, 0, -2):
            b = s[i] + b
            c = int(s[i-1])
            print(s[:i:c])
        return b
print(ct1("s3a1n4d2y")) # string length: 9
```

\square
2. (20 points) Code Tracing: Indicate what the following program prints. Place your answers (and nothing else) in the box under the code.

```
def ct2(x):
    a = 1
    while x > 1:
            print("Round %d, %0.1f" % (a, x))
            a += 1
            newX = (x ** 2) % 10
            if x == newX:
                print("boom!")
                break
            x = newX
    return x
ct2(8)
```

3. (20 points) Reasoning Over Code: Find an argument for roc1 that makes it return True. Place your answer (and nothing else) in the box under the code.
```
def roc1(s):
    a = ""
    b = 0
    for c in s:
            if c in a:
                b += 1
            else:
                a += c
    return len(s) == 6 and b == 2
```

4. (40 points) Free Response: A positive number n is considered powerful if it has at least two different prime numbers as factors and it is the case that, for every prime number p which is a factor of n, p^{2} also divides n . For example, 36 is powerful because 2 and 3 are its only prime factors, and 4 and 9 both divide 36 .
Write the function nthPowerfulNumber (n), which takes a non-negative integer n and returns the nth powerful number. You may assume that isPrime has already been written. nthPowerfulNumber(0) should return 36. The first several powerful numbers are: $36,72,100,108,144,196,200,216,225,288 \ldots$
