
Name: Recitation: Andrew Id:

15-112 Spring 2018 Quiz 8
Up to 20 minutes. No calculators, notes, books, or computers. Do not use recursion. Show your work!

1. (10 points) Short Answer Give an example of a value that cannot be added to a set, and explain why it can’t
be added.

2. (30 points) Code Writing: Write the function mostAppearances(chapters). This function should take a
dictionary that maps chapters to lists of characters who appear in the chapter, and should return a set of the
characters that appear most often across all the chapters. For example, given the dictionary:

{ "Third" : ["Ender", "Peter", "Val", "Stilson"],
"The Giant’s Drink" : ["Graff", "Ender", "Bernard", "Alai"],
"Locke and Demosthenes" : ["Graff", "Peter", "Val", "Ender", "Petra"],
"Valentine" : ["Val", "Ender", "Graff"] }

The function should return { "Ender" }, since "Ender" appears in all four chapters. If "Ender" did not appear
in the first list, then it would return { "Ender", "Val", "Graff" }, since each name would occur in three of
the four lists.

a

3. (15 points) Code Writing: The piece of code shown below
will run in O(N2) time. In the space under the code, write a
new version of the function that performs the same operation
but runs in O(N) time instead.

def reverseNums(lst):
newLst = []
for i in range(len(lst)):

if isinstance(lst[i], int):
newLst.insert(0, lst[i])

return newLst

Built-in Big-O Runtimes
General

isinstance(item, type) O(1)
len(item) O(1)
item[i] O(1)

Strings
c in s O(N)

Lists
lst.append(item) O(1)
lst[i:j:k] O((j − i)/k)
lst.insert(i, item) O(N)
item in lst O(N)
min(lst) / max(lst) O(N)
lst.reverse() O(N)
lst.sort() O(NlogN)

4. (45 points) Short Answer: For each of the three functions shown below, write next to each line of the function
either the Big-O runtime of the line or the number of times the line loops. Then write the total Big-O runtime
of the function in terms of N in the box to the right of the code.

1: # lst1 & lst2 are lists of length N
2: def sa1(lst1, lst2): # Big-O
3: x = 0 # _____
4: for i in range(len(lst1)): # _____
5: if lst1[i] in lst2: # _____
6: for j in range(len(lst2)-1, -1, -1): # _____
7: if lst1[i] == lst2[j]: # _____
8: x += 1 # _____
9: return x # _____

1: def sa2(lst): # lst is a list of length N # Big-O
2: if len(lst) == 0: # _____
3: return False # _____
4: if lst[0] != min(lst): # _____
5: lst.sort() # _____
6: tmp = lst[::2] # _____
7: return max(lst) in tmp # _____

1: def sa3(s): # s is a string with N characters # Big-O
2: for letter in string.ascii_uppercase: # _____
3: if s[-1] == letter: # _____
4: return "" # _____
5: i = len(s) - 1 # _____
6: result = "" # _____
7: while i >= 0: # _____
8: result += s[int(i)] # _____
9: i -= len(s) / 4 # _____

10: return result # _____

a

