
15-112
Spring 2019 Midterm 2

April 4, 2019

Name:

Andrew ID:

Recitation Section:

� You may not use any books, notes, or electronic devices during this exam.

� You may not ask questions about the exam except for language clarifications.

� Show your work on the exam to receive credit.

� You may use the last page and the margins for scrap work.

� You may complete the problems in any order you’d like; you may wish to start with
the free response problems, which are worth most of the credit.

� All code samples run without crashing unless we state otherwise. Assume any imports
are already included as required.

Don’t write anything in the table below.

Question Points Score

1 10

2 10

3 10

4 25

5 25

6 20

7 0

Total: 100

15-112 Spring 2019 Midterm 2 April 4, 2019

1. Short Answer

Answer each of the following very briefly. For multiple choice questions, select the best
answer, and fill in the bubble completely.

(a) (2 points) The following four questions have to do with hash functions and sets.
Choose only one answer for each.

(i) What is a hash function?

A function that turns a mutable data type into an immutable data type

A function that turns an immutable value into an integer

A function that places an object into a set or dictionary

A function that finds a value in a list in constant time

(ii) How is a hashed item put into a set?

The hash value tells the set where to store the item in its hidden list,
and the set places the item at that location

The hash value is placed into the set instead of the item

The hash value is stored as a key and the item is stored as a value, just
like in a dictionary

A set is a list of tuples, where each tuple contains the hash value and
the item

(iii) How is it possible to see if an item is in a set in O(1) time?

Since a set has a constant size, we can scan the entire set in O(1) time

We can hash the item again, and it’s faster to look up the hash value
than the original item, allowing us to search the set in O(1) time

Hashing the item will tell us which index to look into, and we can check
that index in O(1) time

We can’t see if an item is in a set in O(1) time

(iv) Which of the following is a true statement about hashing and sets?

Sets can be hashed and stored inside of sets

Sets cannot be stored in lists

For a given hashable value, the hash function will return the same
output every time.

No two unique values hash to the same result

Page 1 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

(b) (4 points) For each of the following two questions, what is the simplified Big-O
runtime of the function in terms of N? Write your answer in the box under the code.
Write your intermediate work on the lines next to the functions for partial credit.

Built-in Big-O Runtimes
String/List of length N

len(item) O(1)
item[i] O(1)
print(item) O(N)
item.find(x) O(N)
item.count(x) O(N)
x in item O(N)
copy.copy(item) O(N)

import string

def bigO1(s): # N is the length of the string s

x = 0 # ________

for i in range(0, len(s), 2): # ________

if s.find(str(i)) != -1: # ________

x += s.count(str(i)) # ________

elif s[i] in string.ascii_letters: # ________

x = 0 # ________

return x # ________

import copy

def bigO2(lst): # N is the length of the list lst

n, i, result = len(lst), 1, "" # ________

grid = [copy.copy(lst) for i in range(n)] # ________

row, col = 0, 1 # ________

while row < n: # ________

print(grid) # ________

result += grid[row][col] # ________

i = i * 2 # ________

row, col = i // n, i % n # ________

return result # ________

Page 2 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

(c) (1 point) The following two questions have to do with sorting algorithms. Choose
only one answer for each.

(i) Which of the following statements is true regarding bubble sort and selection
sort?

They both have to make the same (or approximately the same) number
of comparisons and swaps

Bubble sort is O(n**2) while selection sort is O(n log(n))

Bubble sort and selection sort have to make the same (or approxi-
mately the same) number of swaps, but bubble sort often performs fewer
comparisons

They both have to make the same (or approximately the same) number
of comparisons, but selection sort often performs fewer swaps

(ii) Which answer best describes merge sort?

It merges every element into a set, where we can quickly find the
smallest value in O(1) time

It only runs in O(n log(n)) time if the elements of the list are already
mostly ordered

It breaks the list into recursively smaller lists, orders those, and begins
merging them until the elements form a single sorted list.

Merge sort returns an ordered list with all duplicate items removed

(d) (2 points) Write the single-expression function oddFactors(x) in the box be-
low, which returns a list of every odd factor of x, including 1 and itself. You must
use at least two of the following concepts: map(), filter(), reduce(), lambda,
and list comprehensions (even if you could do it with only one).

Page 3 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

(e) (1 point) Recall the listFiles(path) function from Week 10, which recursively
returns a list of all files in the folder specified by the string path (as well as its
subfolders). We have provided the function below, with two incomplete statements.
Write the code needed to complete these statements in the boxes below.

def listFiles(path):

if ___???___: #<------------------Answer in box 'i'

return [path]

else:

files = []

for ______???______: #<--------Answer in box 'ii'

files += listFiles(path + "/" + filename)

return files

(i) Complete the statement if ___???___: in the box below

(ii) Complete the statement for ______???______: in the box below

Page 4 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

2. Code Tracing

Indicate what each piece of code will print. Place your answer (and nothing else) in the
box below each piece of code.

(a) (5 points) CT 1

def ct1(lst,x):

L=0

R=len(lst)-1

while L<=R:

i=(L+R)//2

if lst[i]==x:

return i

elif lst[i]<x:

L=i+1

else:

R=i-1

print(lst[L:R+1])

return -1

lst=[1,2,3,5,7,8,10,12,12,14,17]

print(ct1(lst,11))

Page 5 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

(b) (5 points) CT 2

def ct2(s, depth=0):

if len(s) == 0:

return ""

else:

result = ct2(s[1:], depth+1)

if s[0] in "aeiou":

result = s[0] + result

elif s[0] not in result:

result = result + s[0]

print(depth, "out", result)

return result

print(ct2("start"))

Page 6 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

3. Reasoning Over Code

For each function, find parameter values that will make the function return True. Place
your answer (and nothing else) in the box below each block of code.

Note: in the second problem, you can get partial credit if you can’t figure out the correct
answer. See the note above the problem to determine how. If your answer in the left box
is correct, you’ll get full points; if it’s wrong, we’ll look at the partial credit box.

(a) (5 points) ROC 1

def roc1(lst):

assert(len(lst) == len(set(lst)) == 3)

d = { "other" : 0 }

for item in lst:

(a, b) = item

if type(b) == int:

d[a] = b

else:

d["other"] += 1

return set(d.values()) == { 1, 4 }

Answer:

Page 7 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

(b) (5 points) ROC 2

Partial Credit: Write in the right-side box what is printed when the function is
run on the correct input.

def foo(x):

if x == 1:

return []

y = bar(x)

print(x, y)

r1 = foo(x//y)

return r1 + [y]

def bar(n):

for f in range(2, n+1):

if n % f == 0:

return f

return None

def roc2(x):

return foo(x) == [5,3,3,2]

Answer: Partial Credit:

Page 8 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

4. (25 points) Free Response: Play and Musical Classes

Write the classes Play and Musical so that the following test code runs without errors.
Do not hardcode against the values used in the testcases. You must use proper object-
oriented design, including good inheritance, or you will lose points!

A play has a name and a number of scenes

p1 = Play("Our Town", 34)

assert(str(p1) == "Play<Our Town,34>")

p2 = Play("The Crucible", 5)

assert(str(p2) == "Play<The Crucible,5>")

A play begins on Scene 1, and can change scenes

assert(p1.getStatus() == "On Scene 1")

p1.sceneChange()

assert(p1.getStatus() == "On Scene 2")

When it reaches the end, it should say so

for i in range(32): p1.sceneChange()

assert(p1.getStatus() == "On Scene 34")

p1.sceneChange()

assert(p1.getStatus() == "Show is done")

assert(p1 == Play("Our Town", 34) and p1 != Play("Almost, Maine", 34))

assert(p1 != "Our Town")

s = { Play("Our Town", 34) }

assert((p1 in s) and (p2 not in s))

A Musical is a Play that has a song list:

a sorted list of scenes where songs occur

m1 = Musical("Beauty and the Beast", 14, [2,5,6,7,8,10,11,12,13,14])

assert(str(m1) == "Play<Beauty and the Beast,14>")

A musical can do everything a play can do - with music!

assert(m1.getStatus() == "On Scene 1")

m1.sceneChange()

assert(m1.getStatus() == "On Scene 2, with music!")

A musical can also skip forward to the next scene with a song

m2 = Musical("Test Case: The Musical", 12, [4,9])

m2.skipToSong()

assert(m2.getStatus() == "On Scene 4, with music!")

m2.sceneChange()

assert(m2.getStatus() == "On Scene 5")

m2.skipToSong()

assert(m2.getStatus() == "On Scene 9, with music!")

If you're on the last musical scene, don't skip forward!

m2.skipToSong()

assert(m2.getStatus() == "On Scene 9, with music!")

Page 9 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

Additional Space for Answer to Question 4

Page 10 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

Additional Space for Answer to Question 4

Page 11 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

5. (25 points) Free Response: Circle Animation

Write the functions init(d), keyPressed(e,d), timerFired(d), and redrawAll(c,d)

for the time-based animation that meets the requirements below. Assume that the run
function is defined as in the notes (with a timerDelay of 100), and that we do not need
mousePressed(e,d).

The animation has the following properties:

� Every 2 seconds, a circle with radius 10 is generated at a random x and y location.

� The animation draws a 40x40 square in the center of the canvas. It should be drawn
such that it does not obscure the circles (they are always visible).

� A number is also drawn in the center of the box. The number is initially 0.

� Every 100ms, each circle should move 5 pixels to the right. If the center of the circle
moves off the right edge of the screen, the circle should wrap around to the left side
again.

� Every 5 seconds, any circle entirely within the square should disappear.

� For every circle that disappears, the number in the box should increase by 1.

� When the ”p” key is pressed, the animation pauses (i.e. no circles should appear,
disappear, or move and the number should not change.) Pressing ”p” again un-
pauses the animation.

Note: Anything not specified here is up to you. However, we highly recommend that
you don’t use OOP. Also, you must follow the MVC framework.

Hint: You should use d, e, and c in place of data, event, and canvas to save time!

Page 12 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

Additional Space for Answer to Question 5

Page 13 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

Additional Space for Answer to Question 5

Page 14 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

6. (20 points) Free Response: combineInts(lst)

Write the function combineInts(lst) which takes a list of integers. The function returns
the set of integers which can be created by either adding or subtracting each element of
lst. Each element must either be added or subtracted, and each element is only used
once. For example, the integers in lst=[1, 1, 2] can be combined in the following
ways:

#Possible combinations of 1, 1, and 2

1 + 1 + 2 == 4

1 + 1 - 2 == 0

1 - 1 + 2 == 2

1 - 1 - 2 == -2

-1 + 1 + 2 == 2

-1 + 1 - 2 == -2

-1 - 1 + 2 == 0

-1 - 1 - 2 == -4

#Since we're storing these combinations in a set, this test should pass

assert(combineInts([1, 1, 2]) == {-4, -2, 0, 2, 4})

Note: For a list of 3 elements, there are 8 possible ways to add and subtract each inte-
ger, but some of those combinations yield the same total, so combineInts([1, 1, 2])

returns a set of 5 integers. Here are some additional test cases:

assert(combineInts([5]) == {-5, 5})

assert(combineInts([1, 5]) == {-6, -4, 4, 6})

assert(combineInts([1, 5, 10]) == {4, 6, 14, -16, 16, -14, -6, -4})

assert(combineInts([]) == {0})

Your function must use recursion! You may use iteration inside your recursive
function, however.

Page 15 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

Additional Space for Answer to Question 6

Page 16 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

Additional Space for Answer to Question 6

7. (0 points) Bonus CT: Only try this if you’re done with the other questions and are
bored! Write in the box below what the following code prints. You can get 2 extra
points for a correct answer.

import functools

def bonus(n):

g = lambda f: lambda x: f(x) // 2 + 1

def h(y, fn = lambda z: z - 1):

return [] if fn(y) < 5 else [fn(y)] + h(y//2, g(fn))

L = h(n)

return functools.reduce(lambda x, y: x * 10 + y % 10, L, 0)

print(bonus(112))

Page 17 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

Use this page for scrap work. Nothing on this page will be graded!

Page 18 of 19 a

15-112 Spring 2019 Midterm 2 April 4, 2019

Use this page for scrap work. Nothing on this page will be graded!

Page 19 of 19 a

