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Big Ideas

● Sometimes, we cannot find a (reasonable) solution to a problem

● Sometimes, we cannot ensure that a program does what we want it to

● But we can often find solutions that are reasonable enough, and prove that they work in specific 

cases.



For a given problem…

Can we find an efficient algorithm?



What do we think is efficient?

So far, we’ve talked about function families:     

O(1), O(n), O(nlogn), O(n2), O(2n)...

In broader computer science, we categorize these 

function families into two groups:

Polynomial time: O(1), O(n), O(nlogn), O(nk)

Exponential time: O(2n), O(kn), O(n!)

Whenever possible, we want our algorithms to 
run in polynomial time.



subsetSum

Problem: Given a list L of n elements and an integer x,  is there a sublist of L that sums to x?

Obvious solution: produce all possible subsets, return the first one that sums to x.

This works, but is slow on even medium-sized inputs! It runs in O(2n) time (why?), which is exponential (bad)

Can we do better?



Verifying a solution

Assume we have a magic box that can take in a list 

and produce an answer to subsetSum for that 

list. We want to check if this box is legit.

Discuss: How long does it take to verify that that 

answer is correct (is a subset of L and sums to x)?

Answer: O(nlogn) for checking the subset, O(n) 

for checking the sum. Verifying is polynomial!

subsetSum([16, 37, 6, 40, 96, 34, 16, 66], 112)

[16, 6, 40, 34, 16]



Complexity Classes NP and P

There is a class of problems that can have solutions verified in polynomial time. This class is called NP, 

short for “non-deterministic polynomial time”. A function like solveSudoku is in NP.

There is another class of problems that can be solved in polynomial time. This class is called P, for 

polynomial. A function like isPrime is in P.

So far we’ve established that subsetSum is in NP. We don’t yet know whether it’s in P- maybe we could 

make a faster solution, and then it would be. In general, we know that P is a subset of NP (if we can solve 

in polynomial time, we can verify too!).



Problems in NP

There are lots of common and useful problems in 

the class NP, problems that we don’t have a 

polynomial-time solution for (yet). These include:

● Subset sum

● Optimized packing of items (loadBalance)

● Route-planning (Travelling Salesman)

● Coloring a graph (solveSudoku)

● Scheduling with constraints (final exams)

● And many more...

https://en.wikipedia.org/wiki/Knapsack_problem
https://en.wikipedia.org/wiki/Travelling_salesman_problem
https://en.wikipedia.org/wiki/Graph_coloring
https://en.wikipedia.org/wiki/List_of_NP-complete_problems


P vs. NP

Big Idea: wouldn’t it be nice if all problems in NP were also in P? Then we could have fast solutions to lots 

of problems! (Though this would also break most encryption methods…) In other words, could P = NP?

Alternatively, if we can’t have this nice thing, wouldn’t it be great to prove that it’s impossible for some 

problem like subsetSum to have a polynomial-time solution, so we can stop wasting time trying to find 

one? In other words, can we show P != NP?

This question of whether or not P = NP is one of the most important problems in computer science. It’s 

also one of the seven Millenium Prize problems.

https://en.wikipedia.org/wiki/Millennium_Prize_Problems


How can we show P = NP?

If you want to demonstrate that P=NP, you need to show that all problems in NP are also in P.

To make this easier, computer scientists have identified a set of problems called NP-Complete that can be 

mapped to each other.

If you find a solution to an NP-Complete problem (like subsetSum), you can use it to generate a solution 

to any other NP problem in polynomial time. If you find a polynomial solution to subsetSum, it works for 

all NP problems!



How can we show P != NP?

If you want to demonstrate that P != NP, you need to prove that at least one NP problem cannot be 
solved in polynomial time.

How do we prove that it’s impossible to find a better solution? You need to consider all possible situations 

so you don’t miss an unusual, clever algorithm. Writing proofs like this is a large part of theoretical 

computer science.

Most computer scientists think that P != NP, but proving this is very tricky.



For now, whether P = NP or not 
remains a mystery...



For a given algorithm...

Can we ensure that it is correct?



Recent Boeing 737 Crashes

Two Boeing 737 jets have crashed in the past six 

months, both seemingly due to technical errors in 

the automation system.

Why did this happen? Shouldn’t we be able to 

write code that we can be 100% sure will work 

correctly?



The Perfect Test Function

Goal: we want to write the ideal test function, one 

that will verify whether a given program returns 

the correct result on all possible inputs. Let’s call 

it testAll(f).

To test all possible inputs, we first need to make 

sure we don’t get infinite loops/infinite recursion 

on any input to our function. If we don’t, 

testAll(f) will take forever to run!

def testAll(f):
    if not alwaysHalts(f):
        return False
    ...



The Perfect Halting Function

New goal: write the program alwaysHalts(f), 

which returns True if f  ‘halts’ (stops and returns a 

value) on all possible inputs to f.

To solve this, we must write the program 

halts(f, inp), which returns True if f halts on 

the given function and input, and False otherwise.

def alwaysHalts(f):
    for inp in allPossibleInputs(f):
        if not halts(f, inp):
            return False
    return True

The Halting Problem: can we write a program to do this?



No.
Let’s use a Proof by Contradiction to show why.



Proof by Contradiction

To show that the program halts() cannot exist, we 

only need to find one program f and one input inp 

such that it is impossible for halts(f, inp) to 

return the correct result.

To do this, let’s design a program, breakHalts(f), 

which uses halts to break itself.

Here’s the big question: does breakHalts halt 
when given itself as an input, or not?

def breakHalts(f):
    inp = f
    if halts(f, inp):
        print('Running forever!')
        while True: pass
    else:
        print('Halting!')
        return



Case one: breakHalts halts

Assume that breakHalts(breakHalts) does 

halt. 

Therefore, halts(breakHalts, 
breakHalts) should return True, and we enter 

the if case.

Then we enter an infinite while loop… and the 

program never halts.

CONTRADICTION!

def breakHalts(f):
    inp = f
    if halts(f, inp):
        print('Running forever!')
        while True: pass
    else:
        print('Halting!')
        return



Case two: breakHalts loops forever

Assume that breakHalts(breakHalts) will 

not halt, and will instead loop forever.

Therefore, halts(breakHalts, 
breakHalts) should return False, and we enter 

the else case.

But then we immediately return, which means the 

program halts!

CONTRADICTION!

def breakHalts(f):
    inp = f
    if halts(f, inp):
        print('Running forever!')
        while True: pass
    else:
        print('Halting!')
        return



Some Functions are Uncomputable

We just showed that it is impossible to write the program breakHalts and call it on itself. But the 

program we used only had one unusual bit of code- the call to halts(). Therefore, it is impossible to 
write the program halts().

Since we can’t write halts(), we can’t write alwaysHalts(), and since we can’t write 

alwaysHalts(), we can’t write testAll(). These problems are uncomputable- we cannot write a 

program to compute them, no matter how clever we are.

Takeaway: there are some programs that are simply impossible to write!



We still need to write programs.

Can we make them fast and correct?



How do you solve a problem in NP?

Option 1: only run your function on small inputs. (Then bad efficiency doesn’t matter)

Option 2: use heuristics to find a ‘good-enough’ solution

Example: scheduling final exams at CMU

Big Idea: if you can identify when your algorithm is non-polynomial, you can find workarounds to deal with it!



How do we verify that our code works?

We can’t write a universal test function for code.

But we can prove that certain functions will behave as expected on certain classes of inputs.

We can also use contracts to ensure that functions only accept certain types of input and only return 

certain types of output.

Big Idea: test your code well and often and it will be robust, if not perfect.


