
Improving Algorithmic 
Efficiency

15-112



Big Ideas



Efficiency in Algorithms

Now that we know how to calculate the efficiency of a program, we need to consider efficiency during 

algorithm design.

Small changes in a program can lead to big changes in runtime!



Practical Efficiency Improvement

When trying to improve the efficiency of an algorithm, you can consider several factors.

● Is it doing an action multiple times that could instead be done only once?

● Would the data be better represented in a different data structure?

● Is the function breaking out of loops and returning as soon as it can?

These might not always improve the function family of an algorithm, but they can still make substantial 

changes.



Improvement Example - multiple actions

def maxIndexes(lst):

    result = []

    for i in range(len(lst)):

        if lst[i] == max(lst):

            result.append(i)

    return result

def maxIndexes(lst):

    result = []

    maxVal = max(lst)

    for i in range(len(lst)):

        if lst[i] == maxVal:

            result.append(i)

    return result



Improvement Example - data structure

def mostCommonItem(lst):

    bestItem = None

    bestCount = 0

    for item in lst:

        if lst.count(item) > bestCount:

            bestItem = item

            bestCount = lst.count(item)

    return bestItem

def mostCommonItem(lst):

    countD = { }

    for item in lst:

        countD[item] = countD.get(item, 0) + 1

    bestItem = None

    bestCount = 0

    for item in countD:

        if countD[item] > bestCount:

            bestItem = item

            bestCount = count

    return bestItem



Improvement Example - returning early

def isPrime(n):

    prime = True

    if n < 2:

        prime = False

    for factor in range(2, n):

        if n % factor == 0:

            prime = False

    return prime

def isPrime(n):

    if n < 2:

        return False

    for factor in range(2, n):

        if n % factor == 0:

            return False

    return True



Algorithmic Efficiency:
Searching



Activity: Find a Word in a Book



Linear Search

In linear search, we methodically look at every element in the list.

This approach is good when the element could be anywhere in the list.

Let’s code it!



Binary Search

In binary search, we search within a subset of the list where we know the item might be. This subset 

starts as the whole list. We then compare the middle element to our item.

● If it is our item, we’re done!

● If it’s smaller than our item, change the left bound of the subset to the middle index + 1

● If it’s bigger than our item, change the right bound of the subset to the middle index - 1

Then keep going until we find the item, or until the subset is empty.

This approach is good when we know that the list is sorted.

Let’s code it!



Can we do better?

In linear search, we look at every item- that’s O(N).

In binary search, we keep halving the size of the list until it’s empty- that’s O(logN).

Is there a way for us to search for an item in better than O(logN) time?



Sets & Dictionaries: Hashing



How do we make super-efficient datatypes?

We know that sets and dictionaries let us look up (search) an element in constant time.

How is that possible? We just showed that searching a list takes O(logN) time, and that’s if it’s sorted!



List Representation

A list maps indexes from 0 to N to values of any 

type.

In memory, these values are then stored 

side-by-side in equal-sized ‘bins’. The list also 

keeps track of the starting position.

lst = [ 42, 63, 200, -5 ]

42 63 200 -5

0x00 0x08 0x16 0x24



List Representation - Lookup

This representation lets us determine the location 

of an index with a simple formula:

startLocation + index * binSize

This means we can look up the value at a specific 

index in constant time!

Finding the index of a specific value still takes 

linear time- we have to check all possible indexes.

lst = [ 42, 63, 200, -5 ]

lst[2] # 0x00 + 2*8 = 0x16

42 63 200 -5

0x00 0x08 0x16 0x24



Set representation

Sets don’t have indexes that we can see. However, 

in the implementation of sets, values are stored in 

a secret list of some size that does have indexes. 

How does a set determine which index a value 

should go to? Use the value itself!

s = { 42, 63, 200, -5 }

? ? ? ?

0x00 0x08 0x16 0x24



Hash Functions

A hash function is a function that maps a value to an integer. This function must have two properties:

1. f(value) should return the same number every time it’s called on the same value

2. f(value) should generally return different numbers for different values (though they can 

occasionally be the same)

Python has its own built-in hash function: hash(value)



Set Representation

To find the needed index of a given value, a set 

computes hash(value).

However, that number might be out of bounds of 

the list. Therefore, the final index is:

hash(value) % len(list)

What if multiple values have the same index? Put 

them all at that index, in an inner list.

s = { 42, 63, 200, -5 }

# indexes: 2, 3, 0, 3

200 42 63,
-5

0x00 0x08 0x16 0x24



Set Representation - Lookup

When we want to see if a value is in a set, we don’t 

need to look at every possible index.

Instead, re-compute the value’s index using the 

hash function.

If the value isn’t at that location, it isn’t in the list!

Because we only have to check one index, and 

because we can make the underlying list as large 

as it needs to be, this is constant time.

s = { 42, 63, 200, -5 }

200 in s # hash(200) % 4 = 0, check l[0]

73 in s # hash(73) % 4 = 1, check l[1]

200 42 63,
-5

0x00 0x08 0x16 0x24



Sets and Mutability

Sets have one major restriction: they can only 
hold immutable values.

Why? Consider the situation on the right. What 

could go wrong?

To avoid this situation, calling hash on a mutable 

value or adding a mutable value to a set will raise 

an error.

s = set()

lst = [1,2,3]

s.add(lst)

lst.append(4)

print(lst in s)



Algorithmic Efficiency:
Sorting



Many Ways to Sort

As we’ve discussed before, there are often multiple different ways to solve the same problem. This is 

especially true for the problem of sorting an unordered list. In fact, hundreds of different sorting 

algorithms exist!

We’ll focus on three: bubble sort, selection sort, and merge sort. These algorithms provide a good case 

study of why algorithm design matters in efficiency. You can find code for each of these on the website.



Bubble Sort

Idea: while the list isn’t sorted, compare each sequential pair of elements, and swap them if they’re out of 

order. If you make an entire pass through the list without swapping, it’s sorted!

Example: http://math.hws.edu/eck/js/sorting/xSortLab.html

http://math.hws.edu/eck/js/sorting/xSortLab.html


Bubble Sort Function Family

Instead of looking directly at the code, let’s consider the algorithm at a high level. We’ll mainly consider 

the algorithmic steps of swaps and comparisons.

In each iteration, the algorithm makes K-1 comparisons + up to K-1 swaps (where K is the number of 

unsorted elements).

How many iterations happen? In the worst case, we’ll have to iterate once for each element- N times.

That’s 2*(N-1 + N-2 + N-3 + … + 3 + 2 + 1) -> 2*(N-1)*(N-1)/2.

Function Family: O(N**2). Does that match the code?

https://www.cs.cmu.edu/~112/notes/notes-efficiency-sorting.html#bubble


Selection Sort

Idea: look through all the elements that haven’t been sorted yet, keeping track of the index of the 

smallest one; then swap that element with the first unsorted index.

Example: http://math.hws.edu/eck/js/sorting/xSortLab.html

http://math.hws.edu/eck/js/sorting/xSortLab.html


Selection Sort Function Family

In each iteration, we do K-1 comparisons and 1 swap (where K is the number of unsorted elements).

How many iterations happen? Exactly N- one for each moved element.

Again, N + N-1 + N-2 + … + 2 + 1 -> N*N/2

Function Family: O(N**2). Does that match the code?

https://www.cs.cmu.edu/~112/notes/notes-efficiency-sorting.html#selection


Merge Sort

Idea: Instead of swapping elements, we start by noting that a list of length 0 or 1 is sorted. We go through 

the list and merge pairs of sorted sublists into sorted lists of length 2 by moving them in sorted order into 

a temporary list, then back to the original list. We then repeat for length 4, then 8, etc., until the whole list 

is sorted.

Example: http://math.hws.edu/eck/js/sorting/xSortLab.html 

http://math.hws.edu/eck/js/sorting/xSortLab.html


Merge Sort Function Family

First: what is the runtime of the merge step? To merge two lists each of length N, we need to do N-1 

comparisons, then move N elements from the temp list to the original list. That means merging all the 

pairs of sublists in a list of length N takes N+1 + N -> O(N) time.

Second: how many iterations occur? Each time we run the merge step, we double the size of the sorted 

sublists. This means we have to run merge the number of times it takes to divide N by 2- in other words, 

O(logN).

Function Family: O(NlogN). Does that match the code?

https://www.cs.cmu.edu/~112/notes/notes-efficiency-sorting.html#merge


Sorting Efficiency

Fun fact: O(NlogN) is the best generic sorting efficiency possible, at least so far.

Can we ever do better? Yes- sometimes!

● If we parallelize the sorting work, we can run in O(N) time (though still with O(NlogN) work).

● If the elements of the list can be mapped to integers, we can also sort in O(N) time with a method 

similar to hashing.

● If we get lucky and get a good input, some algorithms run in O(N), including Bubble Sort.


