
Efficiency & Big-O Runtime

15-112 2/26/19



Big Ideas



Why do we care about efficiency?



Facets to Consider

Time

Space

Bandwidth

...

Time varies based on processing power, input size, 

random factors…

To smooth out these factors, consider how the 
time changes as the size of the input changes.

Or, more specifically: how does the amount of 
work done change as the size of the input grows?



Measuring the Work Done

We can measure work done on an input by counting how many algorithmic steps a program takes.

Algorithmic step: a simple action done in a program, like adding two numbers. (This is an approximation, 

but good enough for 112)

How do we choose the input? In 112, try to consider the worst-case input for a given program, an input 

that leads to the most possible work being done.



Big-O Notation



Big-O Definition

A mathematical system to demonstrate how a 

function’s number of algorithmic steps grows as 

its input size grows.

Input size: N, where N is the length of a list/string, 

or an integer.

Example:

def addOneToEach(lst):

    for i in range(len(lst)):

        lst[i] = lst[i] + 1

# Operations: 1 + 3*N

# O(3N + 1)



Simplifying Big-O

We only care about the part of the Big-O equation 

that has the largest impact. Therefore, we only 

consider the highest-order term of the equation. 

In O(3N + 1), that’s 3N.

Additionally, we only care about how the equation 

grows with the input. Therefore, we remove all 

constant factors- O(3N) becomes O(N).

Examples:

O(3N^2 - 2N + 25) -> O(N^2)

O(0.00000000001N + 123456789) -> O(N)



Function Families

Simplifying Big-O equations lets us consider primarily which function family a program belongs to.

Grows slowly: Contant [O(1)], Logarithmic [O(logN)], Linear [O(N)]

Grows quickly: Quadratic [O(N^2)], Polynomial [O(N^K)], Exponential [O(K^N)]







Calculating Big-O



Big-O of a Statement

To find the Big-O class of a single Python 

statement, determine how many algorithmic 
steps it takes.

Some built-in functions take multiple steps. You 

can find the mapping of function to number of 

steps here: 

https://www.cs.cmu.edu/~112/notes/notes-effici

ency-builtin-runtime-table.html 

Example:

# len(lst) = N

2 + lst.count("foo")

1 operation for addition + N operations for .count 

-> O(N)

https://www.cs.cmu.edu/~112/notes/notes-efficiency-builtin-runtime-table.html
https://www.cs.cmu.edu/~112/notes/notes-efficiency-builtin-runtime-table.html


Big-O of a Sequence of Statements

When computing the Big-O of a sequence of 

statements, add the individual Big-Os together. 

The highest-order term wins.

Addition should also be used to combine multiple 

actions in a single statement.

Example:

# len(lst) = N

L.sort()

L.sort(reverse=True)

L[0] -= 5

print(L.count(L[0]) + sum(L))

O(NlogN) + O(NlogN) + O(1) + O(N) + O(N) ->

O(NlogN)



Big-O of Nested Statements - Loops

When determining the Big-O of a loop, consider 

how many times the loop iterates. Then multiply 

that # of iterations by the Big-O of the loop’s 

body.

In a for loop, the values in the range/iterator will 

be computed once.

In a while loop, the values in the condition check 

are computed in each loop.

Example:

for c in L:

    L[0] += c

    L.sort()

print(L)

N * (O(1) + O(NlogN)) + O(N) -> O(N^2 logN)



Big-O of Nested Statements - Conditionals

When determining the Big-O of an if statement, 

add the condition check (which happens once), 

then determine logically whether the Big-O of the 

body should be added.

If statements, though nested, are sequential!

Example:

# len(lst) = N

if len(lst) == -1:

    lst.sort()

else:

    lst.append(4)

O(1) + O(1) -> O(1)



Big-O of Composed Statements

When functions are composed, pay attention to 

how the size of the input changes based on the 

function calls.

This can also happen by changing an input inside a 

function- always pay attention to the input size!

Example:

def f(L):

    L1 = sorted(L)  #sorting->NlogN

    return L1

def g(L):

    L1 = L * len(L)

    return L1

result = f(g(L)) # len(L) = N

O(N^2) + O(N^2 logN^2) -> O(N^2 logN)



Let’s Practice!



What’s the Big-O?

def f(lst):
    if len(lst) > 0:
        return lst[0]
    else:
        return None



What’s the Big-O?

def f(n):
    result = 0
    i = n
    while i > 0:
        result = result + i
        i = i // 10
    return result



What’s the Big-O?

def f(lst):
    result = 0
    for i in range(len(lst)):
        result += lst[i]
    return result



What’s the Big-O?

def f(lst):
    result = True 
    for i in range(len(lst)):
        for j in range(i+1, len(lst)):
            if lst[i] == lst[j]:
                result = False
    return result



Checking work: time.time()
def f(lst):
    result = True 
    for i in range(len(lst)):
        for j in range(i+1, len(lst)):
            if lst[i] == lst[j]:
                result = False
    return result

import time
n = 1000
lst1 = [42] * n
lst2 = [42] * (10 * n)
t1 = time.time()
f(lst1)
t2 = time.time()

t3 = time.time()
f(lst2)
t4 = time.time()
print("Time of N: " + str(t2 - t1))
print("Time of 10*N: " + str(t4 - t3))
print("Ratio:" + str((t4-t3)/(t2-t1)))



You do!

def foo(s): #s is a string of length N
    result = 0 
    for char in string.ascii_lowercase:
        if char in s:
            s = s[1:] 
            result += 1
    return result 


