
CS Scholars Programming - Final Evaluation
Evaluation Period: Thursday 08/12 12:00pm - 1:15pm EST

Name:

AndrewID:

This final evaluation will test the knowledge you have accumulated over the course. You
should complete this evaluation during the class period on Thursday 08/12 (from 12pm -
1:15pm EST) and submit it to Gradescope by 1:30pm EST on the same day.

This final evaluation is open-note, but closed to collaboration. You are welcome to
consult the course notes, personal notes, and your past homework assignments during
the evaluation, but you should not communicate with anyone outside of the course staff
during the period of the evaluation. In particular, do not collaborate with other students.

The final evaluation consists of both a written portion and a programming portion. The
written problems should be completed in this starter file; the programming problems
should be completed in the programming starter file. For full credit, complete problems
#1-#5 (graded out of 80 points); for full credit on the spicy version of the evaluation,
complete #6 as well.

Written Problems [40pts]
#1 - Programming Building Blocks - 15pts
#2 - References - 15pts
#3 - Programming Meta-Skills - 10pts

Programming Problems [60pts]
#4 - Code Writing Fundamentals - 20pts
#5 - Control and Data Structures - 20pts
#6 - SPICY: Interactive Programs - 20pts

As a general guideline: each written problem should take approximately 10 minutes to
complete, and each programming problem should take approximately 15 minutes.

Problems #4 and #5 can be tested with the test functions included in the starter file.
Problem #6 should be tested interactively by running the simulation.

Written Problems [40pts]

#1 - Programming Building Blocks - 15pts
Programming Basics, Functions, Conditionals, Loops

Consider the following program:

What will this program print when it runs? Hint: make a variable table on scratch paper!

#2 - References - 15pts
Strings and Lists, References and Memory

Consider the following code:

Which variables share the same reference when the code reaches line #5 (# PAUSE) ?

Which variables share the same reference when the code finishes running?

List all the line numbers where the line of code performs a destructive action.

Which of the following is the correct set of values held by the four variables at the end of
the code?

A = [7, 9] ; B = [4, 1, 9] ; C = [4, 7, 9, 0] ; D = [4, 7, 9, 42]

A = [7, 9] ; B = [4, 1, 9] ; C = [4, 7, 9, 0, 42] ; D = [4, 7, 9, 0, 42]

A = [7, 9] ; B = [4, 1, 9, 42] ; C = [4, 1, 9, 0] ; D = [4, 1, 9, 42]

A = [7, 1, 42] ; B = [7, 1, 42] ; C = [7, 1, 0] ; D = [7, 1, 42]

A = [7, 9, 42] ; B = [7, 1] ; C = [7, 9, 0] ; D = [7, 9, 42]

A = [7, 1, 0, 42]; B = [7, 1, 0, 42]; C = [7, 1, 0, 42]; D = [7, 1, 0, 42]

A = [7, 9, 0, 42] ; B = [7, 1] ; C = [7, 9, 0, 42] ; D = [7, 9, 0, 42]

#3 - Programming Meta-Skills - 10pts
Algorithms, Testing and Debugging, Style

The following three questions test your understanding of programming meta-skills.

A: Say you've written an algorithm at a high level of abstraction to instruct a person in
how to clean their teeth. You tell them to:

1. Put toothpaste on their toothbrush
2. Brush their teeth
3. Rinse their mouth
4. Rinse their toothbrush

Which of the following revisions would move this algorithm to a medium level of
abstraction? Select all that apply.

Add more detail to Step 1
● Ex: Open the toothpaste container, squeeze a small drop onto the brush part of the

toothbrush, close the container
Break Step 2 into parts
● Ex: Brush the front of your top teeth, then the back, then the edges, etc.
Combine Steps 3 and 4 into one general step about rinsing
● Ex: Rinse and you're done
Add a Step 5 about cleaning up afterwards
● Ex: Put away the toothbrush and toothpaste in their proper places

B: Say you encounter the following error message while coding (cont'd on next page):

Traceback (most recent call last):

File "test.py", line 7, in <module>

assert(makePairs([1, 2, 3]) == [[1, 2], [2, 3]])

File "test.py", line 4, in makePairs

result.append([lst[i], lst[i+1]])

IndexError: list index out of range

What is the type of this error?
Syntax Error
Runtime Error
Logical Error

Which of the following steps would most help you debug this problem? Multiple
answers may be correct, but you should just select the best answer.

Carefully read the second-to-last line in the error message
Carefully read Line 4 and the context around it
Carefully read Line 7 and the context around it
Add a print statement that checks the value of i before line 4
Add a print statement that checks the value of lst before line 4
Add a print statement that checks the value of result before line 5
Run makePairs([1, 2, 3]) to see what it returns

C: What is the biggest problem with the following segment of code, which is supposed
to find the index of the largest value in a 2D list?

def biggestIndex(lst):

tmp1= 0

tmp2 =0

for a in range(len(lst)):

for b in range(len(lst[a])):

if lst[a] [b] > lst[tmp1][tmp2]:

tmp1=a

tmp2 = b

else:

pass

return [tmp1, tmp2]

The code is not optimal
The code is not efficient
The code is not clear
The code is not robust

Programming Problems [60pts]

#4 - Code Writing Fundamentals - 20pts
Programming Basics, Function Calls, Function Definitions

Write the function randomlyClose(cutoff). This function takes an integer as a
parameter, then generates two random numbers (each in the range [1, 100], inclusive).
If the difference between those two numbers is less than or equal to the given cutoff,
the function should return True; otherwise, it should return False.

Clarifying examples:
- If the function was given a cutoff of 20 and randomly generated the integers 93

and 88, it would return True (as the difference between 93 and 88, 5, is less than
20)

- If it was given a cutoff of 50 and generated the numbers 81 and 11, it would
return False (as the difference between 81 and 11 is 70, larger than 50).

- If it was given a cutoff of 40 and generated the numbers 19 and 59, it would
return True (as the difference between 19 and 59 is exactly 40).

Hint: recall that the random library has a function randint(a, b) that generates a
random number in the range [a, b].

Note: the test case for this function should work if you produce random numbers in the
way we expect, but may fail if you use a different approach. We'll hand-grade this
problem to check that it's implemented correctly; the test case is just there to help you
check your work. You might still get full credit even if the test case fails as long as your
code is correct.

#5 - Control and Data Structures - 20pts
Conditionals, Loops, Strings, Lists

Write the function lowerToUpper(words) which takes a list of words (strings) and
returns a new list that only contains the words that were all-lowercase. However, those
returned words should be made all-uppercase before being returned.

For example, lowerToUpper(["Hello", "isn't", "it", "Beautiful",

"today"]) would return ["ISN'T", "IT", "TODAY"].

Hint: the string library has a method islower() which returns True if the string is
all-lowercase and False otherwise, and a method upper() which returns a new
all-uppercase version of the string.

#6 - SPICY: Interactive Programs - 20pts
Simulation, Large Programs

Write a simple simulation in our simulation framework (in a 400x400 window) that
represents a plant growing over time as it is watered.

Step 1: The plant should be represented as a skinny green rectangle centered at the
bottom of the screen. The water droplet can be represented as a small blue circle that
starts centered at the top of the screen. So at the beginning of the simulation, the
screen might look like this:

Step 2: As time passes, the water droplet should 'fall' towards the bottom of the screen
at a steady rate.

Step 3: If at any point the water droplet overlaps with the plant rectangle, the droplet
should 'disappear' (move it to somewhere under the bottom of the window to
accomplish this), and the plant should grow a small amount towards the top of the
screen. It should still be rooted at the bottom- just make the rectangle taller.

How can we tell if the droplet overlaps with the rectangle? We'll make it simple and say
that it counts if the bounding box of the droplet overlaps, not the circle itself. We've
included a pre-written helper function, isOverlapping(bounds1, bounds2), that
takes two lists - the [left, top, right, bottom] boundaries of two rectangles - and
returns whether or not they overlap. You can then call this function on the boundaries of
the plant and droplet every time the droplet moves to see if the two are overlapping.

Step 4: Finally, we'd like to be able to water the plant more than once, so add two ways
to reset the position of the water droplet:

● If the user clicks on the screen, the droplet moves to be centered at that location
● If the user presses 'Enter' (and only when the user presses 'Enter'), the droplet

moves to a random position on the screen

The droplet should still fall normally after being moved in either of these ways.

Here's a link to a gif of the finished game to clarify how it should work:
http://www.krivers.net/CSS-m21/demo.gif

Finished early? For extra credit: instead of having only one drop of water on the
screen at a time, generate a new drop of water every time the user clicks the screen or
presses Enter. You'll want to store these drops of water in a list in data, and iterate
over that list in all parts of the code that deal with water droplets. Make sure to make a
safety submission before you do this, just in case you break your original approach!

http://www.krivers.net/CSS-m21/demo.gif

	What will this program print when it runs Hint make a variable table on scratch paper:
	Which variables share the same reference when the code reaches line 5 PAUSE:
	Which variables share the same reference when the code finishes running:
	List all the line numbers where the line of code performs a destructive action:
	A 7 9 B 4 1 9 C 4 7 9 0 D 4 7 9 42: Off
	A 7 9 B 4 1 9 C 4 7 9 0 42 D 4 7 9 0 42: Off
	A 7 9 B 4 1 9 42 C 4 1 9 0 D 4 1 9 42: Off
	A 7 1 42 B 7 1 42 C 7 1 0 D 7 1 42: Off
	A 7 9 42 B 7 1 C 7 9 0 D 7 9 42: Off
	A 7 1 0 42 B 7 1 0 42 C 7 1 0 42 D 7 1 0 42: Off
	A 7 9 0 42 B 7 1 C 7 9 0 42 D 7 9 0 42: Off
	Add more detail to Step 1: Off
	Break Step 2 into parts: Off
	Combine Steps 3 and 4 into one general step about rinsing: Off
	Add a Step 5 about cleaning up afterwards: Off
	Syntax Error: Off
	Runtime Error: Off
	Logical Error: Off
	Carefully read the secondtolast line in the error message: Off
	Carefully read Line 4 and the context around it: Off
	Carefully read Line 7 and the context around it: Off
	Add a print statement that checks the value of i before line 4: Off
	Add a print statement that checks the value of lst before line 4: Off
	Add a print statement that checks the value of result before line 5: Off
	Run makePairs1 2 3 to see what it returns: Off
	The code is not optimal: Off
	The code is not efficient: Off
	The code is not clear: Off
	The code is not robust: Off
	Text1:
	Text2:

