
CS Scholars Programming Hw3 - Written
Due Date: Friday 07/23 EOD

Name:

AndrewID:

For full credit on the assignment, complete either all Review + Core problems (#1-#9) or
all Core + Spicy problems (#1-#3, #7-#12).

Bonus problems are related to the Advanced Track content, and are optional.

Core Problems - Written [30pts]
#1 - Loop Control Variables: While Loops - 9pts
#2 - Code Tracing While Loops - 12pts
#3 -Loop Control Variables: For Loops - 9pts

Review Problems - Programming [40pts]
#4 - Flow Chart to Program - 10pts
#5 - printSquare(n) - 10pts
#6 - printPrimeFactors(x) - 20pts

Core Problems - Programming [30pts]
#7 - drawIllusion(canvas) - 10pts
#8 - isPowerful(x) - 10pts
#9 - Fix the Style - 10pts

Spicy Problems - Programming [40pts]
#10 - longestDigitRun(n) - 10pts
#11 - printTriangle(n) - 10pts
#12 - drawThreadPattern(canvas, spokes, skips) - 20pts

Bonus Problems [10pts]
Advanced Programming 1 - Recursion - 2pts
Advanced Programming 2 - Recursion - 3pts
Advanced Computer Science 1 - Concurrency - 2pts
Advanced Computer Science 2 - Concurrency - 3pts

Core Problems - Written [30pts]

#1 - Loop Control Variables: While Loops - 9pts
Can attempt after While Loops lecture

Each of the following problem prompts could be implemented using a while loop.
Identify the start value, continuing condition, and update action for the loop control
variable you would use in that while loop. Assume that the loop control variable will be
outputted at the beginning of the loop, and no conditional will be used. We've given an
example of what this looks like in the first line

Ex) Output the numbers from 1 to 10, inclusive.
A) Output all even numbers between 2 and 20, exclusive on 20 (but not 2).
B) Output the numbers from 10 to 1, inclusive on both.
C) Output the numbers 3, 9, 15, 21.

Prompt Start Value Continuing Condition Update Action

Ex 1 x <= 10 x = x + 1

A

B

C

#2 - Code Tracing While Loops - 12pts
Can attempt after While Loops lecture

Given the following block of code, fill out a variable table that shows the values of the
variables at the end of each iteration of the loop. You may not need to fill out values for
every listed iteration.

x value y value z value

Pre-loop 0 10 0

Iter 1

Iter 2

Iter 3

Iter 4

Iter 5

Iter 6

Iter 7

Iter 8

#3 - Loop Control Variables: For Loops - 9pts
Can attempt after For Loops lecture

For each of the following range expressions, list all the values the loop variable will be
set to over the course of the range. For example, range(1, 5) produces 1, 2, 3, 4.

Range Expression Numbers Produced

range(3)

range(4, 8)

range(1, 10, 3)

Programming Problems

Each of these problems should be solved in the starter file available on the course
website. They should be submitted to the Gradescope assignment Hw3 - Programming
to be autograded.

Make sure to 'Run file as Script' to check your work before submitting, then check the
autograder feedback after you submit!

Review Problems - Programming [40pts]

#4 - Flow Chart to Program - 10pts
Can attempt after While Loops lecture

Given the control flow chart below, write a function mysteryFunction(a, b, c) that
implements the control flow chart correctly. We recommend that you use a while loop.

#5 - printSquare(n) - 10pts
Can attempt after For Loops lecture

Write a function printSquare(n) which prints an ascii art square out of asterisks based
on the integer n. For example, printSquare(5) would print the following:

Note that the square is five lines long, with each line having five asterisks. As another
example, printSquare(8) would look like:

You'll want to create a loop (we recommend a for loop) where each iteration prints a
single line of the square. To draw multiple stars on a single line, consider using a
separate loop, or a loop nested in the printing loop

Note: n is guaranteed to be positive.

#6 - printPrimeFactors(x) - 20pts
Can attempt after Algorithmic Thinking and Style lecture

Write the function printPrimeFactors(x) which takes a positive integer x and prints
all of its prime factors in a nice format.

A prime factor is a number that is both prime and evenly divides the original number
(with no remainder). So the prime factors of 70 are 2, 5, and 7, because 2 * 5 * 7 = 70.
Note that 10 is not a prime factor because it is not prime, and 3 is not a prime factor
because it is not a factor of 70.

Prime factors can be repeated when the same factor divides the original number
multiple times; for example, the prime factors of 12 are 2, 2, and 3, because 2 and 3 are
both prime and 2 * 2 * 3 = 12. The prime factors of 16 are 2, 2, 2, and 2, because 2 * 2 *
2 * 2 = 16. We'll display repeated factors on a single line as a power expression; for
example, 16 would display 2 ** 4, because 2 is repeated four times.

Here's a high-level algorithm to solve this problem. To find factors manually, iterate
through all possible factors. When you find a viable factor, repeatedly divide the
number by that factor until it no longer evenly divides the number. Our algorithm looks
something like this:

1. Repeat the following procedure over all possible factors (2 to x)
a. If x is evenly divisible by the possible factor

i. Set a number count to be 0
ii. Repeat the following procedure until x is not divisible by the

possible factor
1. Set count to be count plus 1
2. Set x to x divided by the factor

iii. If the number count is exactly 1
1. Print the factor by itself

iv. If the number count is greater than 1
1. Print "f ** c", where f is the factor and c is the count

As an example, if you call printPrimeFactors(600), it should print

2 ** 3
3
5 ** 2

Core Problems - Programming [30pts]

#7 - drawIllusion(canvas) - 10pts
Can attempt after For Loops lecture

Write the function drawIllusion(canvas) which takes a Tkinter canvas and draws the
illusion shown below. You must use a loop to do this; don't hardcode a large number of
rectangles. We recommend that you use a for loop specifically.

Hint: it's easiest to make this illusion by drawing overlapping squares. Start with the
largest black square, then draw the next-largest white square, etc. You'll need to draw
10 squares total. The canvas is 400px wide, so each square should be 20 pixels smaller
on each side than the previous one (with the last square being exactly 40 pixels wide).

Another Hint: start by considering what the loop control variable should be. Which
values need to change as you move to the next square? How do those values relate to
the loop control variable? Consider our approach to drawing a grid in lecture as well.

#8 - isPowerful(x) - 10pts
Can attempt after Algorithmic Thinking and Style lecture

Write a function isPowerful(x) that checks whether an integer is powerful. A positive
integer x is powerful if, for every prime y that divides x, y2 also divides x. Note that we've
provided isPrime(x) in the starter file for your use.

Hint: consider our discussion from lecture!

#9 - Fix the Style - 10pts
Can attempt after Algorithmic Thinking and Style lecture

The programming starter file contains a program drawPlus, which draws an interesting
plus sign using circles. The program is functionally correct, but we've written it with
terrible style.

Fix this program so that it has better style according to the guidelines we discussed in
class, without rewriting the main logic. Then, in a comment above the fixed program,
write out a list of the changes you made to fix the style. You must make valid changes
that cover at least two clarity style principles and and at least two robustness style
principles.

This problem is not autograded; we will hand-grade it instead.

Make sure your fixed program still produces the same outputs as before!

drawPlus(canvas, True) drawPlus(canvas, False)

Spicy Problems - Programming [40pts]

#10 - longestDigitRun(n) - 10pts
Can attempt after While Loops lecture

Write the function longestDigitRun(n) that takes an integer n and returns the digit
that has the longest consecutive run in that number. So longestDigitRun(117773732)

returns 7 (because there is a run of 3 consecutive 7's), and longestDigitRun(676886)

returns 8 (because there are 2 consecutive 8's). You are guaranteed that there will
never be a tie for longest run.

#11 - printTriangle(n) - 10pts
Can attempt after For Loops lecture

Write a function printTriangle(n) which prints an ascii art triangle out of asterisks
based on the integer n. For example, printTriangle(5) would print the following:

*
**

**
*

Note that the triangle is five lines long, with the top and bottom line each having only
one asterisk, the second and second-from bottom lines each having two asterisks, etc.
So printTriangle(9) would look like:

*
**

**
*

You'll want to create a loop (we recommend a for loop) where each iteration prints a
single line of the triangle. To draw multiple stars on a single line, consider using a
nested loop. Note that n is guaranteed to be positive and odd.

Hint: how can the program switch from increasing to decreasing? Consider using a
conditional to check when you hit the midpoint, or two separate loops (one going up,
one going down).

#12 - drawThreadPattern(canvas, spokes, skips) - 20pts
Can attempt after Algorithmic Thinking and Style lecture

In this problem, you'll create a thread pattern with graphics. A thread pattern (also
known as a string art pattern) is made by creating a circle with several spokes placed
around the perimeter, then running a thread around different spokes to create a desired
pattern. Read more here: https://www.guidepatterns.com/35-string-art-patterns.php

We'll create thread patterns algorithmically by specifying a number of spokes to place
around the circle and how many spokes should be skipped each time the thread is
moved to the next spoke. The thread will continue going between spokes until it reaches
the spoke it originally started on. We'll number the spokes starting with 0 at the top, then
increasing going counter-clockwise. So a circle with eight spokes would have spoke 2
where 3 would be on a clock.

Write the function drawThreadPattern, which takes three parameters: the canvas, the
number of spokes in the circle, and the number of spokes to skip each time. This
function should draw the thread pattern with the given parameters. You'll need to draw
the circle (filling the screen with a small margin on each side), the spokes (as much
smaller circles placed evenly around the circle), and the threads (as lines between
spokes). A few examples are shown here:

drawThreadPattern(canvas, 12, 5)

https://www.guidepatterns.com/35-string-art-patterns.php

drawThreadPattern(canvas, 10, 4) drawThreadPattern(canvas, 19, 15)

To provide further clarification, you can find a gif at this link -
http://www.krivers.net/CSS-m21/hw/thread_pattern.gif - of a pattern with ten spokes that
shows what each spoke's number would be. The gif shows how the thread pattern
would be created in real time, starting from the top spoke and skipping 3 spokes each
time. You do not need to create this image or animation- this is just here to help you
understand the problem! Here's a still version of the gif:

http://www.krivers.net/CSS-m21/hw/thread_pattern.gif

Note: for this problem, anything we do not specify is a design decision. For example,
you can decide the size of the margin, as long as it is reasonably close to the examples
shown above.

Hint: how can you calculate where the spokes on the circle should be placed? Use
trigonometry! If you know the center coordinate of a circle and its radius, you can
calculate the coordinate of any point on the perimeter just by using its radius and
SOH-CAH-TOA (https://www.mathsisfun.com/algebra/sohcahtoa.html).

The x coordinate is the adjacent leg of the triangle, and the radius is the hypotenuse, so
we'll use the CAH equation. Make sure to offset by the center point!

𝑥 = 𝑐𝑒𝑛𝑡𝑒𝑟 𝑥 + 𝑐𝑜𝑠𝑖𝑛𝑒(𝑎𝑛𝑔𝑙𝑒) × 𝑟

The y coordinate is the opposite leg, so we'll want to use the SOH equation. Note that y
coordinates are reversed in tkinter, so we need to subtract instead of adding (to move
up instead of down).

𝑦 = 𝑐𝑒𝑛𝑡𝑒𝑟 𝑦 − 𝑠𝑖𝑛𝑒(𝑎𝑛𝑔𝑙𝑒) × 𝑟

Another Hint: you'll want to use the math functions math.cos and math.sin. Note that
these functions take radians, not degrees! If you'd rather work with degrees, use
math.radians to convert them.

https://www.mathsisfun.com/algebra/sohcahtoa.html

Bonus Problems [10pts]

Advanced Programming 1 - Recursion - 2pts
Assume you want to write a function recursiveSum that takes a positive integer, n, and
recursively computes the sum from one to n.

For example, the result when calling the function on n=5 is 5+4+3+2+1 = 15.

What condition do you need to check for your base case?

What do you return in the base case?

What is the recursive call on a smaller problem in the recursive case?

How do you use the recursive call's result to solve the whole problem for n in the
recursive case?

Advanced Programming 2 - Recursion - 3pts
In the programming starter file, write the function powerSum(n, k) that takes two
non-negative integers n and k and returns the so-called power sum: 1k + 2k + ... +

nk. You must use recursion to solve this problem: for loops, while loops, and the
function sum are not allowed.

Note that the test function for powerSum is commented out; you'll need to uncomment it
to test your function.

Advanced Computer Science 1 - Concurrency - 2pts
Exponentiation (raising a base to a power, like 24) can be computed concurrently by first
multiplying pairs of bases (e.g., 2*2) together, and then multiplying those products
together (4*4), and continuing until there is only one answer (16).

Draw a concurrency tree that computes 27. Note that you should only use
multiplication as operations, not exponentiation. You can make a physical drawing and
take a picture, or use an online image editing tool (like Google Drawings). Then upload
your tree into the next page. You should be able to click on the square on the next page,
then add your image directly onto the page. If that doesn't work, contact Prof. Kelly for
assistance.

How many total steps does this tree take?

How many time steps does this tree take?

Advanced Computer Science 2 - Concurrency - 3pts
A factory with four workers produces custom t-shirts. To make a t-shirt, the workers
follow these steps:

● [S] Set up supplies (for measuring) (5 minutes)
● [M] Measure the fabric (5 minutes)
● [S] Set up supplies (for cutting) (5 minutes)
● [C] Cut out the pattern (5 minutes)
● [S] Set up supplies (for sewing) (5 minutes)
● [W] Sew it all together (5 minutes)
● [F] Fold the shirt (5 minutes).

Note that setup occurs once before starting either measuring, cutting, or sewing. When
you set up new supplies for a task, you put away the supplies for the previous task.

Continue to next page

Originally each worker made one shirt at a time, with all four workers working in parallel.
Each of the cells in the following table represents five minutes, with the whole table
representing an hour of work. Fill in the cells with the letters representing the steps to
demonstrate the original system the factory used.

Worker 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 00:50 00:55

A

B

C

D

How many complete, folded shirts could be made by
four workers in one hour with the original system?

Recent budget changes have led to new restrictions on materials. Now the workers
have to share a single sewing machine; in other words, only one worker can sew at any
given point in time. They decide to use a new approach to make things more efficient.

Create a new schedule that uses pipelining to increase the efficiency of the
shirt-making process. (Hint: think about the most efficient way to split up the tasks.)

Worker 00:00 00:05 00:10 00:15 00:20 00:25 00:30 00:35 00:40 00:45 00:50 00:55

A

B

C

D

How many complete, folded shirts could be made by four
workers in one hour using the new pipeline?

	1A:
	x 10A:
	x x 1A:
	1B:
	x 10B:
	x x 1B:
	1C:
	x 10C:
	x x 1C:
	0Iter 1:
	10Iter 1:
	0Iter 1_2:
	0Iter 2:
	10Iter 2:
	0Iter 2_2:
	0Iter 3:
	10Iter 3:
	0Iter 3_2:
	0Iter 4:
	10Iter 4:
	0Iter 4_2:
	0Iter 5:
	10Iter 5:
	0Iter 5_2:
	0Iter 6:
	10Iter 6:
	0Iter 6_2:
	0Iter 7:
	10Iter 7:
	0Iter 7_2:
	0Iter 8:
	10Iter 8:
	0Iter 8_2:
	Numbers Producedrange3:
	Numbers Producedrange4 8:
	Numbers Producedrange1 10 3:
	What condition do you need to check for your base case:
	What do you return in the base case:
	What is the recursive call on a smaller problem in the recursive case:
	recursive case:
	How many total steps does this tree take:
	How many time steps does this tree take:
	0000A:
	0005A:
	0010A:
	0015A:
	0020A:
	0025A:
	0030A:
	0035A:
	0040A:
	0045A:
	0050A:
	0055A:
	0000B:
	0005B:
	0010B:
	0015B:
	0020B:
	0025B:
	0030B:
	0035B:
	0040B:
	0045B:
	0050B:
	0055B:
	0000C:
	0005C:
	0010C:
	0015C:
	0020C:
	0025C:
	0030C:
	0035C:
	0040C:
	0045C:
	0050C:
	0055C:
	0000D:
	0005D:
	0010D:
	0015D:
	0020D:
	0025D:
	0030D:
	0035D:
	0040D:
	0045D:
	0050D:
	0055D:
	How many complete folded shirts could be made by four workers in one hour with the original system:
	0000A_2:
	0005A_2:
	0010A_2:
	0015A_2:
	0020A_2:
	0025A_2:
	0030A_2:
	0035A_2:
	0040A_2:
	0045A_2:
	0050A_2:
	0055A_2:
	0000B_2:
	0005B_2:
	0010B_2:
	0015B_2:
	0020B_2:
	0025B_2:
	0030B_2:
	0035B_2:
	0040B_2:
	0045B_2:
	0050B_2:
	0055B_2:
	0000C_2:
	0005C_2:
	0010C_2:
	0015C_2:
	0020C_2:
	0025C_2:
	0030C_2:
	0035C_2:
	0040C_2:
	0045C_2:
	0050C_2:
	0055C_2:
	0000D_2:
	0005D_2:
	0010D_2:
	0015D_2:
	0020D_2:
	0025D_2:
	0030D_2:
	0035D_2:
	0040D_2:
	0045D_2:
	0050D_2:
	0055D_2:
	How many complete folded shirts could be made by four workers in one hour using the new pipeline:
	Text1:
	Text2:
	Button3:

