
CS Scholars Programming Hw4 - Written
Due Date: Friday 07/30 EOD

Name:

AndrewID:

For full credit on the assignment, complete either all Review + Core problems (#1-#4,
#7-#12) or all Core + Spicy problems (#3-#12).

Bonus problems are related to the Advanced Track content, and are optional.

Review Problems - Written [20pts]
#1 - String Code Tracing - 10pts
#2 - Files in Code - 10pts

Core Problems - Written [20pts]
#3 - Aliasing and Mutability - 10pts
#4 - Parsing Data - 10pts

Spicy Problems - Written [20pts]
#5 - Advanced String Code Tracing - 10pts
#6 - Advanced Files in Code - 10pts

Core Problems - Programming [60pts]
#7 - getSecretMessage(s, key) - 10pts
#8 - sumAnglesAsDegrees(angles) - 10pts
#9 - getCharacterLines(script, character) - 10pts
#10 - onlyOdds(lst) and removeEvens(lst) - 10pts
#11 - drawPixelArt(root, template, pixelSize, colors) - 10pts
#12 - gradebookSummary(filename) - 10pts

Bonus Problems [10pts]
Advanced Programming 1 - Dictionaries - 2pts
Advanced Programming 2 - Trees - 1.5pts
Advanced Programming 3 - Graphs - 1.5pts
Advanced Computer Science 1 - Best Case, Worst Case - 2pts
Advanced Computer Science 2 - Big-O Runtimes - 2pts
Advanced Computer Science 3 - Hashing - 1pt

Review Problems - Written [20pts]

#1 - String Code Tracing - 10pts
Can attempt after Strings and Lists lecture

Assuming that the following two lines of code have been run:

s1 = "15-110 is cool"

s2 = "CMU rocks!"

What will each of the following expressions evaluate to? Don't just run the code in the
editor- try to figure out the answer on your own.

Expression Value

s1[7] + s2[6]

s1[1] + s2[len(s2)-1]

s1[4:8]

s2[2:len(s2)-2]

s1[::4]

#2 - Files in Code - 10pts
Can attempt after Data Analysis lecture

We've written some code to count the number of times the string "Hello World"

occurs within a file:

f = open("sample.txt", "r")

print(f.count("Hello World"))

f.close()

There is a bug in this code that will make it raise a runtime error, even if sample.txt is
located in the same directory as the code. What is the bug, and how could you fix it?

Core Problems - Written [20pts]

#3 - Aliasing and Mutability - 10pts
Can attempt after References and Memory lecture

The following code creates and modifies lists. Determine each list’s values after the
code has run.

Variable List Values

a

b

c

d

Select all of the pairs of lists that are aliased at the end of the code.

☐ a and b

☐ a and c

☐ a and d

☐ b and c

☐ b and d

☐ c and d

☐ None of the lists are aliased

#4 - Parsing Data - 10pts
Can attempt after Data Analysis lecture

You have been given a set of data about CMU classes in the following format
(whitespace added for clarity):

Professor, ClassNum, Days, Time

Cortina, 15104, MTWF, 09:20-10:10

Rivers, 15110, MWThF, 16:00-16:50

Touretzky, 15110, MWThF, 17:20-18:10

Touretzky, 15394, MW, 19:00-20:20

Assume you've already split the string on "\n" and used the variable row to iterate
through each class one line at a time.

Each class number represents the class's department (first two digits) and identifying
number (last three digits). How would you determine which department each class is in?

☐ row.split(',')[1][0:1]

☐ row.split(',')[1][0:2]

☐ row.split(',')[1][2:]

How would you determine the start time and end time of a class and set those times as
strings in the variables start and end? Select all lines that are needed. Assume that
the code is run from the top selected line to the bottom selected line.

☐ times = row.split(',')[0]

☐ times = row.split(',')[3]

☐ start = row.split('-')[0]

☐ start = times.index('-') - 1
☐ start = times.split('-')[0]

☐ end = times.index('-') + 1
☐ end = times.split('-')[1]

☐ end = start + "1:00"

Spicy Problems - Written [20pts]

#5 - Advanced String Code Tracing - 10pts
Can attempt after Strings and Lists lecture

What will the following code print? Don't just type up the code and run it- try to figure out
the answer on your own.

#6 - Advanced Files in Code - 10pts
Can attempt after Data Analysis lecture

Consider the following file code, which is supposed to take a file containing lines of text
and write a file with the same text, but with each word capitalized:

f = open("test.txt", "r")

text = f.read()

words = text.split(" ")

for i in range(len(words)):

words[i] = words[i].capitalize()

newText = " ".join(words)

f = open("test.txt", "w")

f.write(newText)

f.close()

This code can run without raising an error message, and it even works properly on
some files. But it isn't robust - it may cause errors (runtime or logical) in some
conditions.

Identify at least two robustness problems in the code, and explain what you would do to
fix each of them.

HINT: consider what the code would do if you ran it on a file containing the text:

Hello world, how are you today?

I'm doing great, thanks!

Programming Problems

Each of these problems should be solved in the starter file available on the course
website. They should be submitted to the Gradescope assignment Hw4 - Programming
to be autograded.

Make sure to 'Run file as Script' to check your work before submitting, then check the
autograder feedback after you submit!

Core Problems - Programming [60pts]

#7 - getSecretMessage(s, key) - 10pts
Can attempt after Strings and Lists lecture

You can hide a secret message in a piece of text by setting a specific character as a
key. Place the key before every letter in the message, then fill in extra (non-key) letters
between key-letter pairs to hide the message in noise.

For example, to hide the message "computer" with the key "q", you would start with
"computer", turn it into "qcqoqmqpquqtqeqr", and then add extra letters as noise,
perhaps resulting in "orupqcrzypqomqmhcyqpwhhqutqtxtqeyeqrpa". To get the original
message back out, copy every letter that occurs directly after the key, ignoring the rest.

Write a function getSecretMessage(s, key) that takes a piece of text holding a secret
message and the key to that message and returns the secret message itself. For
example, if we called the function on the long string above and "q", it would return
"computer". You are guaranteed that the key does not occur in the secret message.

Hint: loop over every character in the string. If the character you're on is the key, add
the next character in the string to a result string.

#8 - sumAnglesAsDegrees(angles) - 10pts
Can attempt after Strings and Lists lecture

When analyzing data, you need to convert the data from one format to another before
processing it. For example, you might have a dataset where angles were measured in
radians, yet you want to find the sum of the angles in degrees.

Write the function sumAnglesAsDegrees(angles) which takes a list of angles in
radians (floats) and returns the sum of those angles in degrees (an integer). To do this,
you will need to change each angle from radians to degrees before adding it to the sum.
You can do this with the library function math.degrees(). Make sure to round the final
result to get an integer answer.

For example, sumAnglesAsDegrees([math.pi/6, math.pi/4, math.pi]) should
convert the radians to approximately 30.0, 45.0, and 180.0, then return 255.

#9 - getCharacterLines(script, character) - 10pts
Can attempt after Strings and Lists lecture

Assume you're provided a string script that has been formatted in a specific way. Each
line of the script begins with a character's name, followed by a colon, followed by their
line of dialogue. Lines are separated by newlines, which are represented in Python by
the string '\n'. For example:

'''Buttercup: You mock my pain.

Man in Black: Life is pain, Highness.

Man in Black: Anyone who says differently is selling something.'''

Write the function getCharacterLines(script, character), which takes a script
and a character name (both strings) and returns a list of the lines spoken by that
character. The lines should be stripped of the leading character name and any
leading/trailing whitespace. So if we use the following script:

'''Burr: Can I buy you a drink?

Hamilton: That would be nice.

Burr: While we're talking, let me offer you some free advice: talk less.

Hamilton: What?

Burr: Smile more.

Hamilton: Ha.

Burr: Don't let them know what you're against or what you're for.

Hamilton: You can't be serious.

Burr: You want to get ahead?

Hamilton: Yes.

Burr: Fools who run their mouths oft wind up dead.'''

Then:

getCharacterLines(script, "Hamilton") ==

["That would be nice.", "What?", "Ha.", "You can't be serious.", "Yes."]

Hint: you'll want to use string and list methods and operations to make this problem
more approachable. Specifically:

● split can help you separate the lines of text
● index can help you locate where a line of text switches from name to dialogue
● slicing can help you separate the name from the dialogue
● strip can remove excess whitespace from the front and end of the string

#10 - onlyOdds(lst) and removeEvens(lst) - 10pts
Can attempt after References and Memory lecture

First, write a non-destructive function onlyOdds(lst) that takes a list of integers and
returns a new list containing only the odd elements of lst. Note that this should not
return the odd indexes- it should return the odd elements!

For example, onlyOdds([1, 2, 3, 4, 5, 6]) returns [1, 3, 5], and
onlyOdds([4, 1, 70, 35, -9]) returns [1, 35, -9]

Then write a destructive function removeEvens(lst) that takes a list of integers and
destructively removes the even elements of the provided list so that it contains only the
original odd elements at the end of the function. This function should return None

instead of the list; we'll test it by checking whether the input list was modified properly.

For example, removeEvens([1, 2, 3, 4, 5, 6]) modifies the list to be [1, 3, 5],
while removeEvens([4, 1, 70, 35, -9]) modifies the list to be [1, 35, -9].

Hint: this is tricky because lst will change as the function runs. You should use an
appropriate loop to account for this - see the course slides! Also, make sure to check for
aliasing issues.

#11 - drawPixelArt(root, template, pixelSize, colors) - 10pts
Can attempt after References and Memory lecture

Pixel art is an art style where you draw pictures by piecing together oversized pixels
(dots of color) into an image. When we draw graphics in Tkinter, we're technically
drawing with pixels, but the pixels are so small that it's hard to tell.

Write the function drawPixelArt(root, template, pixelSize, colors) which
takes a Tkinter root, a template string, an integer pixel size, and a list of colors (strings),
and generates a piece of pixel art based on that information.

The template is a string that contains only spaces, newlines, and numbers. Each
character represents a square pixel of size pixelSize (with '\n' splitting the lines). If a
pixel is represented by a space, nothing is drawn there. If it's represented by a number,
the color at that index of the colors list is drawn there as a square.

For example, if we call the function on the template:

0 1 2

000 111 222

00000 11111 22222

000 111 222

0 1 2

With the color list ["blue", "green", "red"], we should get:

[continued on next page]

Unlike other Tkinter functions you've written, you need to generate the canvas yourself
for this problem. To do this, use this line of code, which calls a helper function:

canvas = makeCanvas(root, width, height)

If you convert the template to a list (by splitting over the newlines), it's sort of like a 2D
list- each row is just represented as a string instead of a list. width and height can be
calculated as the width (length of each line) and height (number of lines) of that 2D list,
modified by pixelSize. (You're guaranteed that all lines in the template will have the
same number of pixels).

For example, in the pixel art above, if the pixel size is set to 40, the width of the screen
should be 17*40 = 680 and the height of the screen should be 5*40 = 200.

Once you've generated the canvas, you can iterate over the template, access each
character, and draw each pixel using similar logic to how we drew a grid in a previous
lecture. Make sure to use pixelSize to make the pixels the appropriate size!

Bonus: for extra fun, try setting up your own pixel art string to call with your function!
We've set up a function myPixelArt where you can insert your own template and color
list. Cool pixel art will be eligible for a max of three bonus points on the homework
assignment.

#12 - gradebookSummary(filename) - 10pts
Can attempt after Data Analysis lecture

Assume that you have a gradebook for a class stored in a .csv file. Each line of the
gradebook contains a student's ID followed by one or more grades, all separated by
commas. A gradebook always contains at least one student, and each row always
contains at least one grade. Gradebooks can also contain blank lines.

Write the function gradebookSummary(filename) that takes the filename of a
gradebook as an argument and writes a new file (with the name summary_ followed by
the original filename) containing a summary of the gradebook, returning None. This
summary file should also be a csv, but with just three columns: student IDs, mean
grades, and median grades.

In the result file, students should be listed in their original order (separated by newlines),
grades should be rounded to the hundredth digit (with the round function), and there
should be no extra blank lines. Also, there should be a header at the top of the file with
the column names: ids, mean, and median.

For example, if the file gradebook1.txt contains the following text:

wilma,91,93,94

fred,80,85,90,97,100

betty,88

Then gradebookSummary("gradebook1.txt") should create a file
summary_gradebook1.txt with the following text:

id,mean,median

wilma,92.67,93

fred,90.4,90

betty,88,88

Hint: try using the csv and statistics libraries we discussed in class! They will make
this problem much easier, especially if you make a list of grades (converted to integers)
for each student.

Bonus Problems [10pts]

Advanced Programming 1 - Dictionaries - 2pts
Write the tkinter function generateBubbles(canvas, bubbleList) which takes a
tkinter canvas and a list of dictionaries, bubbleList, and draws bubbles as described
in bubbleList.

Each dictionary in the bubble list contains exactly four keys: "left", "top", "size",
and "color". The first three all map to integers (the left coordinate, top coordinate, and
diameter size of the bubble), and the fourth maps to a string (its color). Use this
information to draw the bubble (with canvas.create_oval) in the appropriate location,
with the correct size and color.

For example, if we make run the function with the bubble list from the first test:
bubbleList1 = [{"left":150, "top":150, "size":100, "color":"green"}]

We'll get:

[continued on next page]

And the second test, which has:

bubbleList2 = [

{'left': 317, 'top': 269, 'size': 45, 'color': 'red' },

{'left': 118, 'top': 27, 'size': 90, 'color': 'orange'},

{'left': 101, 'top': 321, 'size': 65, 'color': 'yellow'},

{'left': 231, 'top': 219, 'size': 25, 'color': 'pink' },

{'left': 50, 'top': 12, 'size': 20, 'color': 'blue' }]

Should produce this:

The third test randomly generates 10 bubbles using the provided makeNBubbles(n)

function. Try changing the size of n to generate more or less bubbles, and see how it
looks! Your bubbles will be different every time.

Hint: a list of dictionaries might sound intimidating at first, but it's not so bad! Just loop
over the list, access the dictionary using the loop control variable, then index into the
dictionary to get the needed values.

Advanced Programming 2 - Trees - 1.5pts
We can represent a tournament bracket from a sports competition as a binary tree. To
do this, store the winning team as the root node. Its children are the winning team
again, as well as the second-place team. In general, every node represents the winner
of a match, and its two children are the two teams that competed in that match.

For example, the following bracket represents the last two rounds of the Women's World
Cup in 2019.

In our binary tree dictionary format, this would look like:

t1 = { "contents" : "United States",

"left" : { "contents" : "United States",

"left" : { "contents" : "England", "left" : None, "right" : None },

"right" : { "contents" : "United States", "left" : None, "right" : None}},

"right" : { "contents" : "Netherlands",

"left" : { "contents" : "Netherlands", "left" : None, "right" : None },

"right" : { "contents" : "Sweden", "left" : None, "right" : None } }

}

Write the function getInitialTeams(bracket) which takes a tournament bracket and
returns a list of all the teams that participated in that tournament. For example, if the
function is called on the tree above it might return ["England", "United States",

"Netherlands", "Sweden"]. You will need to implement this function recursively to
access all the nodes. We recommend that you start by looking at the sumNodes and
listValues examples from the slides.

Hint 1: how can we get all of the teams to show up in the list exactly once? Every team
occurs at the very beginning of the tournament, in the first set of matches. In the tree,
this is represented by the leaves, so you should not include values on non-leaf nodes.

Hint 2: make sure the type you return is the same in both base and recursive cases!

Advanced Programming 3 - Graphs - 1.5pts
In college, you get to select your own schedule of classes. However, to take certain
classes you must first pass an earlier class in the course sequence- a prerequisite.
These prerequisites are notoriously complicated. However, we can make them a little
easier to understand by representing the course dependency system as a directed
graph, where the nodes are courses and an edge leads from course A to course B if A
is a prerequisite of B. For example, the core Computer Science courses (almost)
produce the following prereq graph:

Which would be represented in code as:
g = { "110" : [],

"112" : ["122", "150"],

"122" : ["213", "210", "251", "281"],

"151" : ["150", "251", "281"],

"150" : ["210", "251"],

"213" : [],

"210" : [],

"251" : [],

"281" : [] }

Write the function getPrereqs(g, course) that takes a directed graph (in our
adjacency list dictionary format, without weights) and a string (a course name) and
returns a list of all the immediate prerequisites of the given course. If we called
getPrereqs on our graph above and "210", for example, the function should return
["122", "150"].

Hint: you can't just return the neighbors of the course, because the edges are going in
the opposite direction! Instead, iterate over all the nodes to find those that have the
course as a neighbor. Construct a new list out of these nodes as the result.

Advanced Computer Science 1 - Best Case, Worst Case - 2pts
For each of the following functions, describe an input that would result in best-case
efficiency, then describe an input that would result in worst-case efficiency. This
generic input must work at any possible size; don't answer 1 for isPrime, for example.

def getEmail(words):

words is a list

for i in range(len(words)):

if "@" in words[i]:

return words[i]

return "No email found"

def isPrime(num):

for factor in range(2, num):

if num % factor == 0:

return False

return True

What is a best case input for getEmail?

What is a worst case input for getEmail?

What is a best case input for isPrime?

What is a worst case input for isPrime?

Advanced Computer Science 2 - Big-O Runtimes - 2pts
For each of the following functions, check the Big-O function family that function
belongs to. You should determine the function family by considering how the number of
steps the algorithm takes grows as the size of the input grows.

def countEven(L): # n = len(L)

result = 0

for i in range(len(L)):

if L[i] % 2 == 0:

result = result + 1

return result

⃞ O(1)

⃞ O(logn)

⃞ O(n)

⃞ O(nlogn)

⃞ O(n2)

n = len(L)

def sumFirstTwo(L):

if len(L) < 2:

return 0

return L[0] + L[1]

⃞ O(1)

⃞ O(logn)

⃞ O(n)

⃞ O(nlogn)

⃞ O(n2)

n = len(L1) = len(L2)

def binarySearchAll(L1, L2):

count = 0

for item in L1:

Hint: what's the complexity of

binary search?

if binarySearch(L2, item) == True:

count = count + 1

return count

⃞ O(1)

⃞ O(logn)

⃞ O(n)

⃞ O(nlogn)

⃞ O(n2)

n = len(L); original call has i = 0

def recursiveSum(L, i):

if i == len(L):

return 0

else:

return L[i] + recursiveSum(L, i+1)

⃞ O(1)

⃞ O(logn)

⃞ O(n)

⃞ O(nlogn)

⃞ O(n2)

Advanced Computer Science 3 - Hashing - 1pt
Recall our discussion of what hash functions are and what they are used for. Below
we've listed four different scenarios. Each scenario contains a data set, a hash function,
and which values will need to be looked up in the hashtable. Select all the scenarios
where you will generally be able to look up the given values in constant time.

☐ Given a set of integer phone numbers, hash a phone number based on the
phone number itself. Use the hashtable to look up an individual phone number.

☐ Given a set of all the college essays sent to CMU (as strings), hash an essay
based on the first character of the essay ("I want to go to CMU because.."
hashes based on "I"). Use the hashtable to look up an individual essay.

☐ Given a set of string full names (like "Farnam Jahanian"), hash a name by adding
together the numeric ASCII values of all the letters in the name. Use the
hashtable to look up an individual name.

☐ Given a set of lists of high scores (so each list contains integers), hash a list
based on the sum of its scores. Lists can be updated after hashing when new
high scores are added. Use the hashtable to look up an individual high-score list.

☐ None of the situations described above can be searched in constant time.

	Values17 s26:
	Values11 s2lens21:
	Values148:
	Values22lens22:
	Values14:
	located in the same directory as the code What is the bug and how could you fix it:
	List Valuesa:
	List Valuesb:
	List Valuesc:
	List Valuesd:
	a and b: Off
	a and c: Off
	a and d: Off
	b and c: Off
	b and d: Off
	c and d: Off
	None of the lists are aliased: Off
	rowsplit101: Off
	rowsplit102: Off
	rowsplit12: Off
	times rowsplit0: Off
	times rowsplit3: Off
	start rowsplit0: Off
	start timesfind 1: Off
	start timessplit0: Off
	end timesfind 1: Off
	end timessplit1: Off
	end start 100: Off
	undefined:
	Im doing great thanks:
	What is a best case input for getEmail:
	What is a worst case input for getEmail:
	What is a best case input for isPrime:
	What is a worst case input for isPrime:
	Given a set of integer phone numbers hash a phone number based on the: Off
	Given a set of all the college essays sent to CMU as strings hash an essay: Off
	Given a set of string full names like Farnam Jahanian hash a name by adding: Off
	Given a set of lists of high scores so each list contains integers hash a list: Off
	None of the situations described above can be searched in constant time: Off
	Text1:
	Text2:
	Check Box3: Off
	Check Box4: Off
	Check Box5: Off
	Check Box6: Off
	Check Box7: Off
	Check Box8: Off
	Check Box9: Off
	Check Box10: Off
	Check Box11: Off
	Check Box12: Off
	Check Box13: Off
	Check Box14: Off
	Check Box15: Off
	Check Box16: Off
	Check Box17: Off
	Check Box18: Off
	Check Box19: Off
	Check Box20: Off
	Check Box21: Off
	Check Box22: Off

