
#2-1:
Function Definitions
CS SCHOLARS - PROGRAMMING

Course Logistics
Hw1 grades and feedback have been released!

Let's go over how to view your feedback on Gradescope.

2

Notes from Hw1
Evaluation: print vs return

Abstraction: user vs. designer

3

Awesome Graphics!

4

Learning Objectives
Use function definitions when reading and writing algorithms to
implement procedures that can be repeated on different inputs

Recognize the difference between local and global scope

Trace the call stack to understand how Python keeps track of nested
function calls

5

Function Definitions

6

Function Definitions Run on Abstract Input
Last week, we learned about how function calls work. Now we can write
new function definitions ourselves, to implement our own functions.

To write a function, you need to determine what algorithm you want to
implement. You'll convert that algorithm into code that runs on abstract
input.

7

Core Function Definition
Let's start with a simple function that has no explicit
input or explicit output; instead, it just prints some
lines of text.

def helloWorld():

print("Hello World!")

print("How are you?")

helloWorld()

def is how Python knows the following code is a function
definition

helloWorld is the name of the function. This is how we'll
call it.

The colon at the end of the first line, and the indentation at
the beginning of the second and third, tell Python that we're
in the body of the function.

The body holds the algorithm. When the indentation stops,
the function is done.

In this example, the last line calls the function we've written.

8

Parameters are Abstracted Arguments
To add input to the function definition, add parameters inside the parentheses next to the name.

These parameters are variables that are not given initial values. Their initial values will be
provided by the arguments given each time the function is called.

def hello(name):

print("Hello, " + name + "!")

print("How are you?")

hello("Stella")

hello("Dippy")

9

Return Provides the Output
To make our function have a non-None output, we need to have a return statement.
This statement specifies the value that should be substituted for the function call when
the function is called on a specific input.

def makeHello(name):

return "Hello, " + name + "! How are you?"

s = makeHello("Scotty")

As soon as Python returns a value, it exits the function. Python ignores any lines of code
after a return statement.

10

Activity: Write a Function
You do: write a function convertToQuarters that takes a number of
dollars and converts it into quarters, returning the number of quarters.

For example, if you call convertToQuarters on 2 ($2), the function
should return 8 (8 quarters).

11

Control Flow
Writing code with function definitions introduces a new concept to our
programs – control flow. This is the order that statements are executed in as we
run a program.

Before, all our programs ran sequentially from the first statement to the last. But
with function definitions, Python will need to redirect the control flow
whenever we call a function that we've defined.

Control flow is an incredibly useful tool, but it also makes it more difficult to
read and comprehend a program. In particular, when you read code with a
function definition, you have to keep in mind that that definition will not
influence the program until it is called.

12

Analyzing Functions
When a function you've defined is called, you can figure out what it will evaluate to by tracing
through the definition.

def addTip(cost, percentToTip):

return cost + cost * percentToTip

total = addTip(20.00, 0.17)

For example, in this function call, we know the inputs (20.00 and 0.17), so the output must be
20.00 + 20.00 * 0.17, which is 23.4.

Note that this only works because we defined addTip before we called it! Python will still
execute all the statements in order.

13

Activity: Analyze the function
You do: what are the arguments and returned value of this function call, given
the definition?

def distance(x1, y1, x2, y2):

xPart = (x2 - x1)**2

yPart = (y2 - y1)**2

print("Partial Work:", xPart, yPart)

return (xPart + yPart) ** 0.5

result = distance(0, 0, 3, 4)

14

Scope

15

Variables Have Different Scopes
All the work done in a function is only accessible in that function. In other words, if
we make a variable in a function, the outer program can't access it; the only way to
transmit its value is to return it.

def addItUp(x, y, z):
answer = x + y
answer = answer + z

print(answer) # NameError!

The variable answer has a local scope and is accessible only within the function
addItUp.

16

Everything Can Access Global Variables
On the other hand, if a function is told to use a variable it hasn't defined, the function automatically
looks in the global scope (outside the function at the top level) to see if the variable exists there.

x = 5

def test():

y = x + 2

return y

print(test() - x)

If you change a global variable in a function, that's a side effect! It's unlikely that you'll want to use
this, but good to know for debugging.

17

Scope is Like Names
You can think of the scope of a variable as being like
its last name. For example, consider the following
code:

x = "bar"

def test():

x = "foo"

print("A", x)

test()

print("B", x)

x exists in both the local and the global scope, but
the two x variables are separate and have different
values.

Analogy: knowing two people both named Andrew.
They have the same first name, but different last
names.

In the code above, the last name of the function's x
would be test, while the last name of the top-level x
would be global.

In general, it's best to keep variable names different
to avoid confusion.

18

Activity: Local or Global?
Which variables in the following code snippet are global? Which are local?

For the local variables, which function can see them?

name = "Farnam"

def greet(day):
punctuation = "!"
print("Hello, " + name + punctuation)
print("Today is " + day + punctuation)

def leave():
punctuation = "."
print("Goodbye, " + name + punctuation)

greet("Monday")
leave()

19

Function Call Stack

20

Function Calls in Function Definitions
It isn't too hard to trace a function call
when it goes through a single definition,
but it gets a lot harder when that definition
calls another function.

When the code to the right calls the
function outer, outer will run a bit of
code, then call the function inner.

Python needs to keep track of which
variables are in scope at any given point,
and where returned values should be sent.
It does this with a call stack.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

21

Tracing the Code
When Python runs through this code,
it adds outer to its state, then it adds
inner.

When it reaches the last line, it must
call outer to evaluate the expression.
Python puts this line on the stack to
keep track of where it was before.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

22

Call Stack

print(outer(4))

Tracing the Code
Python traces through the outer
function normally until it reaches the
call to inner.

Now it needs to add another layer to
the stack, to keep track of where it is in
outer.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

23

Call Stack

print(outer(4))

return inner(2.0) + 3

Tracing the Code
Python is able to fully execute inner
without calling another function.

When it reaches the return statement,
it looks to the most recent part of the
stack to see where to go next. The
returned value is substituted for the
call there.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

24

Call Stack

print(outer(4))

return inner(2.0) + 3

Tracing the Code
When the value has been returned,
that layer is removed from the stack.

Python is able to finish running the
outer function, and the return
statement goes back to the first layer
of the stack. We'll then print 6.0 and
be done!

def outer(x):

y = x / 2

return inner(y) + 3

def inner(x):

y = x + 1

return y

print(outer(4))

25

Call Stack

print(outer(4))

Activity: Trace the Function Calls
You do: given the code to the right, use
a call stack to trace through the
execution of the code.

It can be helpful to jot down the
current variable values as well, so you
don't have to hold them all in your
head.

What will be printed at the end?

def calculateTip(cost):

tipRate = 0.2

return cost * tipRate

def payForMeal(cash, cost):

cost = cost + calculateTip(cost)

cash = cash - cost

print("Thanks!")

return cash

wallet = 20.00

wallet = payForMeal(wallet, 8.00)

print("Money remaining:", wallet)

26

Call Stacks in Error Messages
Call stacks will show up naturally in your code
whenever you encounter an error message.

The call stack shows you exactly which
function calls led to the location where the
error occurred.

If we insert an error into the middle of the
code, you can see how each level of the stack
is listed out.

def outer(x):

y = x / 2

return inner(y) + 3

def inner(a):

b = a + 1

print(oops) # will cause an error

return b

print(outer(4))

27

Traceback (most recent call last):
File "example.py", line 10, in <module>

print(outer(4))
File "example.py", line 3, in outer

return inner(y) + 3
File "example.py", line 7, in inner

print(oops) # will cause an error
NameError: name 'oops' is not defined

Sidebar: input function
There's one built-in function that we didn't cover last week which we should look into
now.

The built-in function input(msg) displays a message in the interpreter, lets the user
type a response in the interpreter, then returns the response as a string when the user
presses enter.

name = input("Enter your name: ")

print("Hello, " + name + "!")

This is pretty different from what we're used to, but it makes it possible for you to write
interactive programs more easily!

28

input() Returns a String
input()will always return a string. If we want to use a user's response as
a number, we need to use type-casting to change it.

age = int(input("Enter your age: "))

print("You'll be", age + 1, "next year")

This won't handle the case where the user enters something they weren't
supposed to- we'll talk more about how to handle that later.

29

Example input algorithm
We could use input to set up a basic dialogue with the user.

name = input("What's your name?")

age = int(input("Hi, " + name + "! How old are you?"))

print("Nice! I'm a computer, I don't have an age.")

30

Learning Objectives
Use function definitions when reading and writing algorithms to
implement procedures that can be repeated on different inputs

Recognize the difference between local and global scope

Trace the call stack to understand how Python keeps track of nested
function calls

31

