
#2-2: Booleans and
Conditionals
CS SCHOLARS – PROGRAMMING

Learning Goals
Use logical operators on Booleans to compute whether an expression is
True or False

Use conditionals when reading and writing algorithms that make choices
based on data

Use nesting of control structures to create complex control flow

2

Logical Operators

3

Booleans are values that can be True or False
In week 1, we learned about the Boolean type, which can be one of two
values: True or False.

Until now, we've made Boolean values by comparing different values, such
as:

x < 5

s == "Hello"

7 >= 2

4

Logical Operations Combine Booleans
We aren't limited to only evaluating a single Boolean comparison! We can
combine Boolean values using logical operations. We'll learn about three
– and, or, and not.

Combining Boolean values will let us check complex requirements while
running code.

5

and Operation Checks Both
The and operation takes two Boolean
values and evaluates to True if both
values are True. In other words, it
evaluates to False if either value is
False.

We use and when we want to require
that both conditions be met at the
same time.

Example:

(x >= 0) and (x < 10)

a b a and b

True True True

True False False

False True False

False False False

6

or Operation Checks Either
The or operation takes two Boolean
values and evaluates to True if
either value is True. In other words,
it only evaluates to False if both
values are False.

We use or when there are multiple
valid conditions to choose from.

Example:

a b a or b

True True True

True False True

False True True

False False False

7

(day == "Saturday") or (day == "Sunday")

not Operation Reverses Result
Finally, the not operation takes a single
Boolean value and switches it to the
opposite value (negates it). not True
becomes False, and not False
becomes True.

We use not to switch the result of a
Boolean expression. For example, not
(x < 5) is the same as x >= 5.

Example:

not (x == 0)

a not a

True False

False True

8

Activity: Guess the Result
If x = 10, what will each of the following expressions evaluate to?

x < 25 and x > 15

x < 25 or x > 15

not (x > 5 and x < 10)

(x > 5) or ((x**2 > 50) and (x == 20))

((x > 5) or (x**2 > 50)) and (x == 20)

9

Conditionals

10

Conditionals Make Decisions
With Booleans, we can make a new type of code called a conditional.
Conditionals are another form of a control structure – they let us change
the direction of the code based on the value that we provide.

To write a conditional (if statement), we use the following structure:

if <BooleanExpression>:

<bodyIfTrue>

Note that, like a function definition, the top line of the if statement ends
with a colon, and the body of the if statement is indented.

11

Flow Charts Show Code Choices
We'll use a flow chart to demonstrate how
Python executes an if statement based on
the values provided.

print("hello")

if x < 10:

print("wahoo!")

print("goodbye")

wahoo! is only printed if x is less than 10.
But hello and goodbye are always printed.

12

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10True False

The Body of an If Can Have Many Statements
The body of an if statement can have any number of statements in it. As
with function definitions, each statement of the body is on a separate line
and indented. The body ends when the next line of code is unindented.

print("hello")

if x < 10:

print("wahoo!")

print("wahoo!")

print("goodbye")

13

if x < 10, prints:
hello
wahoo!
wahoo!
goodbye

if x >= 10, prints:
hello
goodbye

Else Clauses Allow Alternatives
Sometimes we want a program to do one of two alternative actions based
on the condition. In this case, instead of writing two if statements, we can
write a single if statement and add an else.

The else is executed when the Boolean expression is False.

if <BooleanExpression>:

<bodyIfTrue>

else:

<bodyIfFalse>

14

}
}

if clause

else clause

Updated Flow Chart Example
print("hello")

if x < 10:

print("wahoo!")

else:

print("ruh roh")

print("goodbye")

15

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10

print
'ruh roh'

True False

Activity: Conditional Prediction
Prediction Exercise: What will the following code print?

x = 5
if x > 10:

print("Up high!")
else:

print("Down low!")

Question: How can we change the program state to print the other string
instead?

Question: Can we change the state to make the if/else statement print out both
statements?

16

Else Must Be Paired With If
It's impossible to have an else clause by itself, as it would have no
condition to be the alternative to.

Therefore, every else must be paired with an if. On the other hand,
every if can have at most one else.

17

Elif Implements Multiple Alternatives
Finally, we can use elif statements to add alternatives with their own
conditions to if statements. An elif is like an if, except that it is checked only
if all previous conditions evaluate to False.

if <BooleanExpressionA>:

<bodyIfATrue>

elif <BooleanExpressionB>:

<bodyIfAFalseAndBTrue>

else:

<bodyIfBothFalse>

18

Updated Flow Chart Example
print("hello")

if x < 10:

print("wahoo!")

elif x <= 99:

print("meh")

else:

print("ruh roh")

print("goodbye")

19

print
'hello'

print
'wahoo!'

print
'goodbye'

print
'ruh roh'

True
False

True False

print
'meh'

if x < 10

if x <= 99

Conditional Statements Join Clauses Together
We can have more than one elif clause associated with an if
statement. In fact, we can have as many as we need! But, as with else, an
elif must be associated with an if (or a previous elif).

In general, a conditional statement is an if clause with zero or more elif
clauses and an optional else clause that are all joined together. These
joined clauses can be considered a single control structure. Only one
clause will have its body executed.

20

Example: grade calculator
Let's write a few lines of code that takes a grade as a number, then prints
the letter grade that corresponds to that number grade.

90+ is an A, 80-90 is a B, 70-80 is a C, 60-70 is a D, and below 60 is an R.

21

Activity: calculate late fee
You do: write a few lines of code that determine whether a library book is
late. If it isn't, print out a message saying that everything is fine; if it is
late, print out the late fee.

Start with a few variables. maxDays is the number of days a book is
allowed to be checked out; set it to 30. dailyFee is the fine per day once
a book is late; set it to 10 (10 cents). daysPassed can then be the
number of days that you've had the book checked out.

22

Short-Circuit Evaluation
When Python evaluates a logical expression, it acts lazily. It only evaluates the second
part if it needs to. This is called short-circuit evaluation.

When checking x and y, if x is False, the expression can never be True. Therefore,
Python doesn't even evaluate y.

When checking x or y, if x is True, the expression can never be False. Python
doesn't evaluate y.

This is a handy method for keeping errors from happening. For example:

if type(x) == type(y) and x < y:

print("Smaller:", x)

23

Activity: Kahoot!
Let's do a quick Kahoot to practice evaluating Boolean expressions that
may or may not use short-circuit evaluation.

Join the Kahoot here: kahoot.it

24

kahoot.it

Nesting Control Structures

25

Nesting Creates More Complex Control Flow
Now that we have a control structure, we can put if statements inside of
if statements.

In general, we'll be able to nest control structures inside of other control
structures. This can currently be done with if statements and function
definitions.

In program syntax, we demonstrate that a control structure is nested by
indenting the code so that it's in the outer control structure's body.

26

Example: Car rental program
Consider code that determines if a person can rent a
car based on their age (are they at least 26) and
whether they have a driver's license.

We can use one if statement to check their age,
then a second (nested inside the first) to check the
license. We'll only print 'Rental Approved' if both if
conditions evaluate to True.

if age >= 26:
if license == True:

print("Rental Approved")
else:

print("Rental Denied")
else:

print("Rental Denied")

27

print
'Rental Approved'

print
'Rental Denied'

print
'Rental Denied'

True False

True Falseif license == True

if age >= 26

Alternative Car Rental Code
In the code below, we accomplish the
same result with the and operation.

This won't always work, though – it
depends on how many different results
you want.

if age >= 26 and license == True:

print("Rental Approved")

else:

print("Rental Denied")

28

print
'Rental Approved'

print
'Rental Denied'

True False
if age >= 26 and
license == True

Nesting and If/Elif/Else Statements
When we have nested conditionals with elif or else clauses, Python pairs them with
the if clause at the same indentation level. This is true even if an inner if statement
occurs between the outer clauses!

if first == True:

if second == True:

print("both true!")

else:

print("first not true")

Question: if we want to add an else statement to the inner if, where should it go?

In general, an outer if/elif/else statement cannot come between parts of an inner
conditional.

29

Nesting Conditionals in Functions
When we nest a conditional inside a function definition, we can return values
early instead of only returning on the last line. Returning early is fine as long as
we ensure every possible path the function can take will eventually return a
value.

A function will always end as soon as it reaches a return statement, even if
more lines of code follow it. For example, the following function will not crash
when n is zero.

def findAverage(total, n):
if n <= 0:

return "Cannot compute the average"
return total / n

30

Exercise: Convert Flow Chart to Code

31

print
"It's a fish"

print
"It's a dog"

print
"It's a cat"

True

False

print
"What a good pet!"

if numLegs != 4

if wagsTail == True

False

True

Learning Goals
Use logical operators on Booleans to compute whether an expression is
True or False

Use conditionals when reading and writing algorithms that make choices
based on data

Use nesting of control structures to create complex control flow

32

