
#2-3: Testing and
Debugging
CS SCHOLARS – PROGRAMMING

Learning Goals
Recognize the different types of errors as they naturally occur during
Python programming

Debug logical errors by using debugging strategies

Write tests that verify whether a program is working as expected

2

Python Errors

3

Syntax Errors Occur due to Bad Syntax
When Python executes your code, it first has to break your text down into tokens, then
structure those tokens into a format that the computer can execute.

The programming language's syntax is a set of rules for how code instructions should be
written. When syntax is correct, Python is able to tokenize and structure code without a
problem.

If the interpreter runs into an error while tokenizing or structuring, it calls that a syntax
error. In other words, you get a syntax error when the code you provide does not follow
the rules of the Python language's syntax.

A syntax error means that none of your code will run, because the syntax can't be
parsed.

4

Examples of Syntax Errors
Most syntax errors are called SyntaxError, which make them easy to spot. For example:

x = @ # @ is not a valid token

4 + 5 = x # the parser stops because it doesn't follow the rules

There are two special types of syntax errors: IndentationError and incomplete error.

x = 4 # IndentationError: whitespace has meaning

print(4 + 5 # Incomplete Error: always close parentheses/quotes

5

Execution Errors are Runtime Errors
After Python tokenizes and structures the code, the interpreter runs
through the control flow of the program line-by-line.

If an error occurs as the code is being executed, it's called a runtime error.
Everything that happened before that error will execute just fine, but
everything afterwards will not run.

Runtime errors have many different names in Python. Each name says
something about what kind of error occurred, so reading the name and
text can give you additional information about what went wrong.

6

Examples of Runtime Errors
print(Hello) # NameError: used a missing variable

print("2" + 3) # TypeError: illegal operation on types

x = 5 / 0 # ZeroDivisionError: can't divide by zero

We'll see more types of runtime errors as we learn more Python syntax.

7

Other Errors are Logical Errors
If we manage to run Python code completely, does that mean it's correct?

Not necessarily! Logical errors can occur if code runs but produces a result
that was not what the user intended. The computer can't catch logical
errors because the computer doesn't know what we intend to do.

To catch logical errors, you usually need to test your code. We'll do this
mainly with assert statements.

8

assert Statements Check Correctness
An assert statement takes a Boolean expression. If the expression evaluates to
True, the statement does nothing. If it evaluates to False, the program crashes.

We use assert statements to check for logical errors by testing whether the
output of a function call is equal to what we expect it to be. If the result is not
correct, you get an AssertionError.

assert(findAverage(20, 4) == 5)

Logical errors are the hardest to find and fix. We'll talk about how to debug them
in a few minutes.

9

Examples of Logical Errors
print("2 + 2 = ", 5) # no error message, but wrong!

def double(x):

return x + 2 # adding instead of multiplying

assert(double(3) == 6) # this will raise an AssertionError

10

Activity: Predict the Error Type
Let's test your knowledge of error types with a Kahoot!

Given a line of code, predict whether it will result in a Syntax Error, Runtime
Error, Logical Error, or no error.

If you aren't sure, try to think about whether the problem will occur during
syntax parsing/structuring, or execution, or if it will run properly but still have a
problem.

Join at kahoot.it

11

https://kahoot.it/

Debugging Logical Errors

12

Debug Logical Errors By Checking Inputs and Outputs
When your code generates a logical error,
the best thing to do is compare the
expected output to the actual output.

1. Copy the function call from the assert
that is failing into the interpreter.
Compare the actual output to the
expected output.

2. If the expected output seems incorrect,
re-read the problem prompt.

3. If you're not sure why the actual output
is produced, use a debugging process
to investigate.

13

function call expected output

Ways to Debug
There are many approaches you can take towards debugging code
effectively. Let's highlight three.

Rubber Duck Debugging: talking through your code

Printing and Experimenting: visualizing what's in your code

Thorough Tracing: checking each part of the code line-by-line

14

Understanding the Prompt
When something goes wrong with your code, before rushing to change the
code itself, you should make sure you understand conceptually what your
code does.

First- make sure you're solving the right problem! Re-read the problem
prompt to check that you're doing the right task.

It can often help to analyze the test cases to make sure you understand
why each input results in each output.

15

Rubber Duck Debugging
If you find yourself getting stuck, try rubber duck debugging. Explain what
your code is supposed to do and what is going wrong out loud to an
inanimate object, like a rubber duck.

In the process of explaining your code out loud to someone else, you may
find that a piece of your code does not match your intentions, or that you
missed a step. You can then make the fix easily. This works more often than
you might think!

16

Print and Experiment
If rubber duck debugging doesn't work, try printing and experimenting to
determine where in your code the problem is.

Add print statements around where you think the error occurs that display
relevant values in the code. Run the code again and check whether the printed
values match what you think they should be at that stage in the code.

Each print call should also include a brief string that gives context to what is
being printed. For example:

print("Result pre-if:", result)

17

Making Hypotheses
If something looks wrong in the printed results, make a hypothesis about
what the problem is and adjust your code accordingly. Then run the code
again and see if the values change. Repeat this as much as necessary until
your code works as expected.

An important part of this process is that you have to be intentional about
the changes you make. Don't just change parts of the code haphazardly -
have a theory for why each change might fix your problem.

18

Activity: Debug getSize
Here is a function that is supposed to
take a shirt size in inches and return
the size as a string (small, medium, or
large). But it's not working correctly.

Work with your breakout group to
debug the program. Try using either
rubber duck debugging or print and
experiment to figure out what's going
wrong.

def getSize(length):

if length <= 38:

print("small")

elif length <= 40:

print("medium")

else:

print("large")

return length

assert(getSize(39) == "medium")

19

Thorough Tracing
If you can't find the problem through printing and experimenting, you
may have to resort to thorough tracing to determine what's going wrong.

Step through your code line by line and track on paper what values should
be held in each of your variables at each step of the process.

Compare your traced values with what you would create step-by-step if
you were solving the problem by hand. This might help you identify where
the problem is occurring.

20

Tracing with Tools
Learning how to trace code by hand is a useful skill, but there are also tools that can help
support you during debugging. Start with the website http://pythontutor.com/ .

If you paste your code into the editor and click 'Visualize Execution', you can step
through your code line by line. The tool will visualize the state of the program on the
right as you step through it. This can be very helpful!

21

http://pythontutor.com/

Activity: Practice with PythonTutor
You do: Here is the same buggy
program as before. Try pasting it into
PythonTutor and stepping through the
program line by line.

Link: http://pythontutor.com/

What do you notice as you're tracing
the program? What stands out?

def getSize(length):

if length <= 38:

print("small")

elif length <= 40:

print("medium")

else:

print("large")

return length

assert(getSize(39) == "medium")

22

http://pythontutor.com/

Debugging is Hard
Finally, remember that debugging is hard! If you've spent more than 15
minutes stuck on an error, more effort is not the solution. Get a friend or
TA to help, or take a break and come back to the problem later. A fresh
mindset will make finding your bug much easier.

23

Testing

24

Test Cases Use assert Statements
In this week's homework (and future homeworks), the starter file for
programming assignments will contain test cases that use assert.

To check your solutions against the test cases, use Run File as Script. If you
have not commented out the test cases and the file runs without crashing,
your code is (probably) correct. On the other hand, if your code throws an
AssertionError, that means you have a logical error in one or more of
your solutions.

25

Writing Your Own Tests
In real life, test cases aren't provided for you automatically. You have to
write your own test cases if you want to make sure that your code works
properly.

In general, you want to have a set of tests for every function that you
write. Designing those tests is a bit of an art form!

26

Testing
When writing test functions, you need to cover likely cases where things
can go wrong. If you don't, your program might develop a bug without
you realizing!

In particular, you should always try to cover:
◦ Normal cases – provided and obvious examples
◦ Large cases – larger-than-usual input
◦ Edge cases – pairs of input that result in opposite choices in the code
◦ Special cases – 0 and 1, empty string, unexpected types
◦ Varying results – make sure that all your test cases don't return the same

result!

27

Example Test Cases
Recall the car rental program we wrote last time. Let's write some test cases for it!

assert(canRentCar(23, True) == False) # normal case

assert(canRentCar(87, False) == False) # large input

assert(canRentCar(25, True) == False) # edge case

assert(canRentCar(26, True) == True) # edge case, varying result

assert(canRentCar("oops", True) == False) # special case

assert(canRentCar(32, True) == True) # varying result

28

Testing gradeCalculator
You do: Try to come up with test cases for each of these categories for a
function gradeCalculator, which turns numeric grades into letter
grades, returning the letter grade as a string.

Normal case:

Large case:

Edge case:

Special case:

Varying results:

29

Test first!
There's a temptation when programming to write the code first, then test
it when you're done.

It's actually much more useful to write the tests first, then write the code!
Writing the tests will help you better understand what the code needs to
do.

This is called test-driven development.

30

Sidebar: Clean Up Top-Level Testing
Some students like to test their code by adding print statements and
function calls at the top level of the code (not inside a function).

This is fine, but if you do this, remove the top-level code before you
submit on Gradescope. Otherwise, the tool might mark your entire
submission as incorrect instead of only marking the single broken function.

Alternative approach: do testing in the interpreter! After you 'Run File as
Script', all of your functions are available there to be tested.

31

Learning Goals
Recognize the different types of errors as they naturally occur during
Python programming

Debug logical errors by using debugging strategies

Write tests that verify whether a program is working as expected

32

