
Advanced Programming
#2: Language Types
CS SCHOLARS - PROGRAMMING

Learning Goals
Understand the different types of imperative and declarative
programming paradigms

Write Python code in an object-oriented style and in a functional style

Recognize other variations in programming language design have
strengths and weaknesses

2

Programming Paradigms
There are many different ways to approach programming. To start, we'll examine
two main categories of programming languages.

Imperative programming languages are state-based. In programming, we think
of state as the data that a program processes, the current values held in the
computer's memory that can be accessed or changed. State-based programming
revolves around the state and how to change it.

Declarative programming languages are property-based. These languages avoid
changing the state of the program; instead, they declare what the result of a
computation should look like. These properties are used to perform actual
computation.

3

Imperative Programming

4

Imperative Programming
When programming imperatively, you usually focus on how the program
should change the state over time. This is done with direct commands on
variables and other data structures that might update over time.

There are many different sub-categories of imperative programming
languages. Two common ones are procedural and object-oriented
programming, which are two different ways to organize the commands of
programming.

5

Imperative – Procedural
Procedural programming revolves around describing different procedures
(or functions) that can be performed on data, then calling those
procedures on data directly.

Most of the programming we'll do in Python is procedural, though Python
can be used in other programming paradigms as well. Another common
procedural language is C.

6

Imperative – Object-Oriented
Object-oriented programming (or OOP) still uses functions, but groups the
functionality of the program into different objects to improve organization.

A classic theme in object-oriented programming is inheritance- build objects to
inherit features and methods from each other, so that repeated work can be
minimized.

One of the most common object-oriented languages is Java. Python is not quite
as object-oriented as Java, but you can still do OOP in Python if you want to!

7

Programming in Python with OOP
You can try creating and using objects yourself with just a little more Python syntax!

The class command lets you set up a new class definition. This describes a new object
type that you design, both the properties of that type and the actions it can take.

class MyObject:

stuff goes here

Class definitions use indentation to specify what is part of the definition vs. not the
same way that function definitions do.

8

OOP Properties in Python
First, you can add properties to a class to describe attributes that are
represented in it.

To add a property to a class, put a variable assignment into the indented code
under the class line. When you want to stop adding properties, un-indent the
code to go back to normal code.

class Coordinate:

x = 0

y = 0

9

Programming in Python with OOP
Once you've defined a class, you can create a new instance of that class by calling the class name as if it were a function.

point = Coordinate()

If the class defines the general properties of this data type, the instance, or object, represents a specific example of that
type.

You can also use the properties of the object as if they were variables. To do this, use the object variable, then a period,
then the name of the property you want to access.

print(point.x) # originally 0

point.x = 20

print(point.x) # now it's 20!

10

Programming in Python with OOP
The cool thing about objects is that you can create as many objects as you
want, and they're all separate. Changing one doesn't change the others.

point1 = Coordinate()

point2 = Coordinate()

point1.y = 10

print(point2.y) # still 0!

11

Methods vs Functions
You can also add methods to a class to describe what that class can do, and what can be
done to it.

A method is like a function, except it must be called on an object instead of being called
directly in the code. You can call some methods on strings, for example.

We'll learn more about methods when we learn about lists.

abs(10) # example of a function

"hello".isalpha() # example of a method

12

OOP Methods in Python
To set up a method in a class definition,
just define a function indented inside the
class.

You do have to add one special
component, an extra parameter at the
front of the parameter list, typically called
self. This parameter will refer to the
object that the method is called on.

You can use the same period syntax to
access the properties of the self object.

class Coordinate:

x = 0

y = 0

def distance(self, otherX, otherY):

xDiff = (self.x - otherX)**2

yDiff = (self.y - otherY)**2

return (xDiff + yDiff)**0.5

13

Set Up Objects with __init__
Usually, we don't set up the properties of
an object directly in the class. Instead, we
set them up in a special method called
__init__.

This method is called when the instance is
constructed. It lets you set up specific
property values for each new object.

There are a lot more specialty methods
you can implement in a class. Learn more
at
https://docs.python.org/3/reference/data
model.html

class Coordinate:

def __init__(self, x, y):

self.x = x

self.y = y

point1 = Coordinate(10, 10)

point2 = Coordinate(3, 5)

print(point1.x, point2.x) # 10 3

14

https://docs.python.org/3/reference/datamodel.html

OOPy Programming Example
Here's an example of how we might
calculate the distance between two
points in an OOPy way.

OOP is mainly useful when you're
working with lots of intricate data
types. It's great for massive
application development, and game
development.

class Coordinate:

def __init__(self, x, y):

self.x = x

self.y = y

def distance(self, other):

xDiff = (self.x - other.x)**2

yDiff = (self.y - other.y)**2

return (xDiff + yDiff)**0.5

point1 = Coordinate(10, 10)

point2 = Coordinate(3, 5)

print("Distance:", point1.distance(point2))

15

Declarative Programming

16

Declarative Programming
When programming declaratively, you focus on what the result should look like,
in terms of its properties. When the computation is expressed directly, the
programming language itself can evaluate the code to determine what the result
should be.

Many declarative languages aim to avoid changing state, and instead create new
state when needed. This is done to avoid side effects, and to make it possible to
mathematically prove when code works.

There are many different subfields of declarative programming. We'll look into
two- functional and logic programming.

17

Declarative – Functional
Functional programming uses functions, like procedural programming. However,
these functions do not track state; they derive the output directly based on the
input.

This is often done by stating the returned value recursively, where the function
calls itself on a different input. This is similar to a proof by induction- if we can
derive f(x-1), we can derive f(x). Recursion will show up in a future advanced
topic.

A common functional programming language is Haskell. You can also write code
functionally in Python as long as you avoid changing the program state.

18

Functional Programming in Python
The concepts we've learned so far are actually pretty easy to fit into functional programming. We just need
to avoid changing variables to take a functional approach.

One way to ensure that you don't change state is to define functions as lambda functions instead of
regular function definitions. A lambda function is written all on one line, and the 'body' of the function
evaluates down to a single expression (the value to be returned). It takes the format:

lambda args : returnedValue

For example, to calculate the distance between two points functionally, we could write the following
lambda.

distance = lambda x1, y1, x2, y2 : ((x2 - x1)**2 + (y2 - y1)**2)**0.5

distance(1, 1, 4, 5) # 5.0

19

Functional Programming with Lists
Functional programming mainly looks different from regular programming when it
comes to iteration and lists, which we'll cover in the next two weeks.

If you want to peek ahead, try reading up on some of the core functions of functional
programming:

map – takes a list and applies an operation to every value in that list
◦ https://docs.python.org/3/library/functions.html#map

reduce – takes a list and combines all the elements of the list together based on an
operation
◦ https://docs.python.org/3/library/functools.html#functools.reduce

filter – takes a list and filters out values that don't match a requirement
◦ https://docs.python.org/3/library/functions.html#filter

20

https://docs.python.org/3/library/functions.html#map
https://docs.python.org/3/library/functools.html#functools.reduce
https://docs.python.org/3/library/functions.html#filter

Declarative - Logic
Logic programming sets up a series of logical facts and rules and uses those facts and
rules to derive new ideas. When the user sets the system a goal, the system attempts to
achieve the goal by chaining together the facts and rules already known.

This is mainly used in mathematical settings, to derive new proofs. However, math can
be applied in many fields of computer science, especially machine learning. This is also
useful when attempting to find a solution that meets a certain set of constraints.

Python does not directly support logic programming, but there are external packages
which can be imported in Python to perform these kinds of operations. A common logic
programming language is Prolog.

21

https://github.com/logpy/logpy

Language Variations

22

Other Variations
Beyond Imperative and Declarative language styles, there are dozens of other
models that programming languages can use to support different programming
tasks. A list can be found here.

Beyond that, programming languages make many choices about how to
represent syntax and process code. All of this variation means that there are
hundreds of programming languages to choose from!

We'll look at a few different options that you might have noticed when
comparing Python to a language you've learned before: compiled vs. dynamic,
weakly typed vs. strongly typed, and text vs. block.

23

https://en.wikipedia.org/wiki/Programming_paradigm

Compiled vs. Dynamic
When a computer runs a program, it needs to parse and compile the program before it
can compute the result. This is the process the computer uses to understand how code
should be executed at the machine level, where commands eventually turn into
hardware-level operations.

Some languages are compiled- the code must be fully compiled before it can be run.
Compilation will often pre-perform some operations, to optimize how quickly the
program runs when the user begins the process. Java is a common compiled language.

Other languages are dynamic- they re-compile the code every time the user runs it, and
can add certain computations in as the program runs. These programs are often slower,
as the computer can not pre-calculate results, but they also allow for more
experimentation. Python is a common dynamic language.

24

Weakly vs. Strongly Typed
Most programming languages have a concept of data types. We've already gone over
ints, floats, strings, and Booleans in this class.

Some languages have weak typing. Every variable has a type at runtime, but the type of
the variable can change as the variable itself is updated with new values. This allows for
more flexibility during code-writing. Python is a common weakly-typed language.

Some languages have strong typing. Variables must be assigned a type when they are
defined, and the type may not change during runtime. Type changes are considered
runtime errors in these languages. This prevents bugs caused by accidental type
changes during computation. Java is a common strongly-typed programming language.

25

Text vs. Block
In all programming languages, the user must communicate the program to the
computer in some way. But the modality used for communication can be different
across different languages!

Most languages use text, like Python. The user must type out the text of the program,
then the program parses the text into tokens and evaluates it. The syntax of the text
varies across languages.

Some languages use blocks instead of text. These languages specify all the different
commands of the language as visual blocks, and the user can drag-and-drop them into
an environment, arranging and nesting them as needed to achieve functionality. These
blocks directly represent tokens, so syntax errors are rarer. Scratch is a common block
language.

26

Learning Goals
Understand the different types of imperative and declarative programming
paradigms

Write Python code in an object-oriented style and in a functional style

Recognize other variations in programming language design have strengths and
weaknesses

Most of the information in this slide deck was developed based on Wikipedia's
entry on Programming Paradigms. If you're interested, you can read more there!

27

https://en.wikipedia.org/wiki/Programming_paradigm

