
#3-1: While Loops
CS SCHOLARS – PROGRAMMING

Learning Goals
Use while loops when reading and writing algorithms to repeat actions
while a certain condition is met

Identify start values, continuing conditions, and update actions for loop
control variables

Translate algorithms from control flow charts to Python code

Use nesting of statements to create complex control flow

2

Repeating Actions is Annoying
Let's write a program that prints out the numbers from 1 to 10. Up to now, that would look like:

print(1)

print(2)

print(3)

print(4)

print(5)

print(6)

print(7)

print(8)

print(9)

print(10)

3

Loops Repeat Actions Automatically
A loop is a control structure that lets us repeat actions so that we don't
need to write out similar code over and over again.

Loops are generally most powerful if we can find a pattern between the
repeated items. Noticing patterns lets us separate out the parts of the
action that are the same each time from the parts that are different.

In printing the numbers from 1 to 10, the part that is the same is the
action of printing. The part that is different is the number that is printed.

4

While Loops

5

While Loops Repeat While a Condition is True
A while loop is a type of loop that keeps repeating only while a certain condition is met. It uses
the syntax:

while <booleanExpression>:

<loopBody>

The while loop checks the Boolean expression, and if it is True, it runs the loop body. Then it
checks the Boolean expression again, and if it is still True, it runs the loop body again... etc.

When the while loop finds that the Boolean expression is False, it skips the loop body the
same way an if statement would skip its body.

6

Conditions Must Eventually Become False
Unlike if statements, the condition in a while loop must eventually become False. If this
doesn't happen, the while loop will keep going forever!

The best way to make the condition change from True to False is to use a variable as part of
the Boolean expression. We can then change the variable inside the while loop. For example,
the variable i changes in the loop below.

i = 1

while i < 5:

print(i)

i = i + 1

print("done")

7

Infinite Loops Run Forever
What happens if we don't ensure that the condition eventually becomes False? The while loop
will just keep looping forever! This is called an infinite loop.

i = 1

while i > 0:

print(i)

i = i + 1

If you get stuck in an infinite loop, press the button that looks like a lightning bolt above the
interpreter (or refresh the page in repl.it) to make the program stop. Then investigate your
program to figure out why the variable never makes the condition False. Printing out the
variable that changes can help pinpoint the issue.

8

while Loop Flow Chart
Unlike an if statement, a while loop
flow chart needs to include a transition
from the while loop's body back to
itself.

i = 1

while i < 5:

print(i)

i = i + 1

print("done")

9

i = 1

if i < 5

print(i)

i = i + 1

print("done")

True False

loop body

You Do: Trace the Program
You do: if we slightly change the code from the previous program, what
happens to the program?

i = 1

while i < 5:

i = i + 1 # moved up one line

print(i)

print("done")

10

Loop Control Variables

11

Use Loop Control Variables to Design Algorithms
Now that we know the basics of how loops work, we need to write while
loops that produce specific repeated actions.

First, we need to identify which parts of the repeated action must change
in each iteration. This changing part is the loop control variable(s), which
is updated in the loop body.

To use this variable, we'll need to give it a start value, an update action,
and a continuing condition. All three need to be coordinated for the loop
to work correctly.

12

Loop Control Variables - Example
In our print 1-to-10 example, we want to start the variable at 1, and continue while the
variable is less than or equal to 10. Set num = 1 at the beginning of the loop and
continue looping while num <= 10. The loop ends when num is 11.

Each printed number is one larger from the previous, so the update should set the
variable to the next number (num = num + 1) in each iteration.

num = 1

while num <= 10:

print(num)

num = num + 1

13

Loop Control Variables – Counting Backwards
How would we change the program if we wanted to count backwards instead? The loop
control variable is the same, but its components change.

Set num = 10 at the beginning of the loop and continue looping while num >= 1.
The loop ends when num is 0.

Each printed number is one smaller from the previous, so the update should set the
variable to the next number (num = num - 1) in each iteration.

num = 10
while num >= 1:

print(num)
num = num - 1

14

Activity: Print Even Numbers
You do: your task is to print the even numbers from 2 to 100.

What is your loop control variable? What is its start value, continuing
condition, and update action?

Once you've determined what these values are, use them to write a short
program that does this task.

15

Loops in Algorithms

16

Implement Algorithms by Changing Loop Body
Suppose we want to add the numbers from
1 to 10.

We need to keep track of two different
numbers:

◦ the current number we're adding

◦ the current sum

Both numbers need to be updated inside
the loop body, but only one (the current
number) needs to be checked in the
condition.

result = 0

num = 1

while num <= 10:

result = result + num

num = num + 1

print(result)

17

Which is the loop control variable?

Tracing Loops
Sometimes it gets difficult to understand
what a program is doing when that
program uses loops. It can be helpful to
manually trace through the values in the
variables at each step of the code,
including each iteration of the loop.

result = 0
num = 1
while num <= 7:

result = result + num
num = num + 1

print(result)

step result num

pre-loop 0 1

iteration 1 1 2

iteration 2 3 3

iteration 3 6 4

iteration 4 10 5

iteration 5 15 6

iteration 6 21 7

iteration 7 28 8

post-loop 28 8

18

Update Order
When updating multiple variables in a
loop, order matters. If we update num
before we update result, it changes
the value held in result.

result = 0
num = 1
while num <= 7:

num = num + 1
result = result + num

print(result)

Note: Python checks the condition only
at the start of the loop; it doesn't exit
the loop as soon as num becomes 8.

step result num

pre-loop 0 1

iteration 1 2 2

iteration 2 5 3

iteration 3 9 4

iteration 4 14 5

iteration 5 20 6

iteration 6 27 7

iteration 7 35 8

post-loop 35 8

19

Activity: Trace a While Loop
You do: What will the following
code print?

Try using a table to manually trace
through the code!

x = 16

y = 1

count = 0

while y < x:

y = y * 2

count += 1

print(count)

20

Nesting Conditionals in while Loops
We showed previously how we can nest conditionals in
other conditionals to combine them together. We can do
the same thing with while loops!

For example, let's make ascii art. Write code to produce
the following printed string:

x-x-x
-o-o-
x-x-x
-o-o-
x-x-x

The loop will iterate over the rows that are printed. The
program decides whether to print the x line or the o line
based on the value of the loop control variable.

If it's even (0, 2, and 4) print x; if it's odd (1 and 3) print o.

row = 0
while row < 5:

if row % 2 == 0:
print("x-x-x")

else:
print("-o-o-")

row = row + 1

21

Nesting while Loops in Functions
We can also nest loops inside of function
definitions.

If we return inside a loop, we will immediately
exit the function- no further iterations will run.

For example, if we want to check whether a
multiple of factor occurs within a certain
range, we can return True as soon as we find
a multiple, or False if we never find one.

Normally you return in a conditional nested
inside the loop, not the loop body itself.

def multipleInRange(start, end, factor):

i = start

while i <= end:

print(i) # shows loop ends early!

if i % factor == 0:

return True

i += 1

return False

22

Activity: Write a Loop Function
You do: write a variation on the multipleInRange function that counts
the number of multiples of factor in the given range and returns that
count instead of returning True or False.

Hint: think about when you'll know for sure that you can return a result.

23

Loop Control Variables – Advanced Example
It isn't always obvious how the start values,
continuing conditions, and update actions of a
loop control variable should work. Sometimes
you need to think through an example to make
it clear!

Example: simulate a zombie apocalypse. Every
day, each zombie finds and bites a human,
turning them into a zombie. If we start with just
one zombie, how long does it take for the
whole world (7.5 billion people) to turn into
zombies?

We'll need to track and update two variables-
one for the number of zombies, one for the
number of days passed.

Loop control variable: # of zombies
Start value: 1 zombie

Continuing condition: while the number of zombies is
less than the population
Update action: double the number of zombies every day

zombieCount = 1

population = 7.5 * 10**9

daysPassed = 0

while zombieCount < population:

daysPassed = daysPassed + 1

zombieCount = zombieCount * 2

print(daysPassed)

24

Loop Control Variables – Another Example
Example: how would you count the number of
digits in an integer?

One answer: A number abc can be written as:

a*100 + b*10 + c*1

or

a*102 + b*101 + c*100

Check each power of 10 until one is bigger than
the number. A separate variable can track the
actual number of digits counted.

Loop control variable: which power of 10 is being checked

Start value: 1 (100)

Continuing condition: while the power of 10 isn't greater
than the number

Update action: multiply the power by 10

num = 2020

power = 1

digits = 0

while power < num:

digits = digits + 1

power = power * 10

print(digits)

25

Loop Control Variables – Another Example
Another answer: instead of comparing a power
of 10 to the number, change the number itself.

For example, to count the digits in abc, change:

abc ->

ab ->

a

The number of times you can divide the
number by 10 is the number of digits.

Loop control variable: the number itself
Start value: the number's initial value
Continuing condition: while the number is not
yet 0 (no digits)
Update action: divide the number by 10

num = 2020
digits = 0
while num > 0:

digits = digits + 1
num = num // 10

print(digits)

26

Activity: Order the Loop Lines
A Parsons Puzzle is a type of problem where you're given all the lines of a program and need to
arrange them into the correct order (including correct indentation levels).

In the following puzzle, you will order lines to create the function compoundInterest(base,
rate, numYears), which calculates the amount that a base sum will have increased based on an
annual interest rate and the number of years that have passed.

To compute the new base sum after numYears, add the current amount of money times the interest
rate to the base sum every year.

Try out the Parsons Puzzle here with your breakout group: https://bit.ly/110-compound

Note that you will not need to use every line on the left to solve the puzzle.

27

https://bit.ly/110-compound

Learning Goals
Use while loops when reading and writing algorithms to repeat actions while a
certain condition is met

Identify start values, continuing conditions, and update actions for loop control
variables

Translate algorithms from control flow charts to Python code

Use nesting of statements to create complex control flow

28

