
#3-3: Algorithmic
Thinking and Style
CS SCHOLARS – PROGRAMMING

Learning Goals
Identify whether a problem can be solved by following an algorithm,
applying a pattern, or problem solving

Apply general style principles to write clear and robust code

Solving Familiar Problems

Designing Algorithms
Finding the right Python syntax to write a program isn't really the hardest
part of programming. Designing an algorithm to solve a problem is where
the process really gets tricky.

Luckily, designing new algorithms doesn't always have to be difficult.
There are many situations where you don't need to make a new algorithm
at all; you can either use a pre-existing algorithm, or you can use an
algorithmic pattern you've used before.

Pre-Existing Algorithms
Algorithms can be represented in many forms
other than code!

Sometimes an algorithm might be provided to
you in the text of the problem statement itself.

For example, consider the prompt to the right.
We can use this prompt to find the input (a
number), the output (a Boolean, whether it's
prime), and a bit of the algorithm (check that
only 1 and the number itself are factors).

Algorithms can also be provided as flow
charts, or formulas.

Write a function to determine whether a given
number is prime.

A number is prime if it is only divisible by two
numbers – itself and 1.

No other number between 1 and the prime
should be a factor.

Note that primes must be larger than 1.

Pseudocode
If we wanted to break this into abstracted algorithmic steps (also called pseudocode), it
might look like this:

Input: int (the number, x)

Output: bool (whether it's prime)

1) Verify that x is bigger than 1

2) Check all the numbers between 1 and x

a) Verify that the number does not evenly divide x

3) Output whether x passed all verifications

It's often easier to code an algorithm if you write out the pseudocode first!

Algorithmic Patterns
There will also be many cases where an algorithm is not directly available
for a program you need to implement, but you still don't need to invent a
brand-new algorithm on your own. These programs will often follow
common algorithmic patterns.

If you can recognize when a problem is similar to a pattern you've seen
before, you can make the problem-solving process much more
straightforward.

Example Algorithmic Pattern
For example, consider the prompt on the
right.

The prompt isn't giving us the exact way to
solve the problem. But it feels similar to a
problem we've seen before- it's checking
for numbers that divide the given number,
just like isPrime!

We can use the structure of isPrime
(looping over possible factors and
checking something for each) as a starting
place.

Write a function that checks
whether a number is powerful.

A positive integer x is powerful if,
for every prime y that divides x, y2

also divides x.

Solving New Problems

Inventing New Algorithms
There will be times when you need to write an algorithm that is unlike any
problem you've worked with before. In this situation, you can't rely on a pre-
built algorithm or adapt an algorithmic pattern; you need to build a new
algorithm on your own.

This is one of the hardest parts of the programming process, because you can't
follow instructions to get the right answer; every problem is different. This just
takes practice to learn.

However, there are a few strategies you can use that might make the problem-
solving process easier.

Strategy 1: Human Computer
First, you can use the human computer strategy to look for natural approaches
towards solving the problem.

Try to solve an example input to the problem yourself, as a human being. You
can then extrapolate from your own approach to come up with an algorithm.

The human computer approach works best when you make your own approach
as systematic and detailed as possible. Pay attention to every step you take, and
make sure not to skip steps. Think about how the computer would see the
problem- would the computer see it differently from you?

Human Computer Example
Example: Write the function rectangularPegRoundHole(r, w, h),
which returns True if a rectangular peg with width w and height h can
pass through a round hole with radius r, and False otherwise.

You Do: Imagine trying to fit a rectangular object into a round hole. How
can you tell if the peg will be able to fit or not?

Human Computer Example
The longest part of the rectangle is its diagonal. If the diagonal fits, the
rest will too; if the diagonal doesn't fit, then the whole thing doesn't work.

Now you just need to calculate the length of that diagonal in code and
compare it to the diameter.

Human Computer Code
def rectangularPegRoundHole(r, w, h):

calculate diagonal

diagonal = (w**2 + h**2)**0.5

calculate diameter

diameter = r * 2

compare

return diagonal <= diameter

Strategy 2: Test-Driven Design
Another strategy that can help make problem solving easier is test-driven
design. This is an approach where you start by generating test cases
instead of by jumping right into the problem.

Test-driven design can be useful because it helps you think through all the
requirements of the code, which can help you notice patterns and edge
cases in advance. This is better than realizing you've made a logical error
only after you've written all the code.

Test-Driven Design Example
Example: Write the function nearestBusStop(street) that takes a
non-negative integer street number and returns the nearest bus stop to
the given street. Buses stop on every 8th street, including street 0, and
ties go to the lower street.

You Do: what are some test cases we could use for this function that
would inform us about how it works?

Test-Driven Design Example
Normal case: the nearest bus stop to 6th street would be 8th street

Edge case: where is there a change in results, maybe from 8th street to
16th street? 12th street goes to 8th street, but 13th street goes to 16th street

Special case: do we need to deal with negative or float street numbers?
No- the prompt says non-negative integer.

The test functions show that this is like a step function. We can either use
conditionals or the mod operator to make this work.

Test-Driven Design Code
def nearestBusStop(street):

get distance from prev street

belowDistance = street % 8

if belowDistance <= 4: # edge case specifies this

return street - belowDistance # lower street

else:

return street + (8 - belowDistance) # upper

OR

offset = street + 3

return offset - (offset % 8)

Strategy 3: Simplify and Solve
The third strategy is called simplify and solve. The main idea is that it's
sometimes easier to solve a problem if you make that problem simpler
first.

Solve the smaller problem, then add back in the more complex details
once the core problem is done.

Simplify and Solve Example
Example: we want to draw the flag of the United States using tkinter
graphics.

You Do: how can you break the US flag down into simpler parts?

Simplify and Solve Example
Start with just the stripes of the flag
with a blue rectangle in the corner.
Match proportions as you go!

Then arrange the stars by drawing
circles instead. Start with a normal
grid, then alternate stars.

Finally, figure out how to draw a star
instead of a circle. You can use a
helper method here!

Simplify and Solve Code – Step 1
We'll need lists to draw stars properly. But we can do the rest now!

def drawFlag(canvas, width, height):
numStripes = 13
stripeHeight = height / numStripes
for stripe in range(numStripes):

top = stripe * stripeHeight
if stripe % 2 == 0:

color = "red"
else:

color = "white"
canvas.create_rectangle(0, top, width, top + stripeHeight,

fill=color, width=0)

squareHeight = stripeHeight * 7
squareWidth = width * 0.4
canvas.create_rectangle(0, 0, squareWidth, squareHeight,

fill="blue", width=0)

Simplify and Solve Code – Step 2
...
starRows = 9
starCols = 11
starYMargin = squareHeight / 20
starSize = (squareHeight - 2 * starYMargin) / starRows
innerXMargin = squareWidth / 60
outerXMargin = (squareWidth - starCols * starSize - innerXMargin * 10) / 2
for row in range(starRows):

top = starYMargin + row * starSize
for col in range(starCols):

if (row % 2 == 0 and col % 2 == 0) or \
(row % 2 == 1 and col % 2 == 1):
left = outerXMargin + col * (starSize + innerXMargin)
canvas.create_oval(left, top, left + starSize, top + starSize,

fill="white", width=0)

Style

Real-World Coding
When you're working on a homework assignment, you probably mainly
care about getting the code to work.

But this isn't how programming works in real life. If you write a piece of
code that accomplishes a task, it's highly likely that you or someone else
will want to use that code again at some point in the future.

It's even possible that you'll want to change the code slightly when the
goals of the task change.

Purpose of Style
Whenever you write code that anyone (including yourself) will look at
again in the future, you should write that code with good style.

Style is all the decisions you make as you write code about how to
organize and implement an algorithm.

It's very much like a writing style or a drawing style; everyone will
approach how they organize their code a little differently.

Different Styles
Input: int

Output: bool

def is_prime(num):

if num < 2:

return False

for factor in range(2, num):

if num % factor == 0:

return False

return True

def isPrime(x):

"""

takes an integer and returns

whether or not it's prime

"""

if(x<=1):

return(False)

check each possible factor

for i in range(2,x):

if((x%i)==0):

return(False)

return(True)

Style Principles
There are lots of recommendations for how to write code with good style.
We'll group them into two major categories:

◦ Clarify – principles that make your code easier to read

◦ Robustness – principles that make code easier to modify

Style – Clarity

Style Principles for Clarity
You spend as much time reading code as you do writing code, if not more!
Writing code that is clear and easy to read is therefore extremely important.

We'll look at four general principles for writing clear code:

1. Use consistent formatting

2. Use good naming conventions

3. Don't include unnecessary code

4. Remember to document

Consistent Formatting
In general, try to be consistent with how you format whitespace in code.

Python will let you get away with somewhat uneven indentation in different
parts of a program, but the result is harder to read. Be consistent about whether
you use spaces or tabs, and always use the same number of spaces or tabs when
indenting code.

BAD
def isPrime(x):

if x < 2:
return False

for factor in range(2, x):
if x % factor == 0:

return True
return False

GOOD
def isPrime(x):

if x < 2:
return False

for factor in range(2, x):
if x % factor == 0:

return True
return False

Consistent Formatting
Code is also easier to read when the whitespace used between tokens is consistent.

You can choose to use no unnecessary whitespace, or add a space between every pair
of tokens, or even choose some operators that will have whitespace added and some
that won't.

BAD

x =(3+ 2) / 5

GOOD

x = (3 + 2) / 5

Also- don't let your lines of code get too long. A general guideline is to pick a number of
characters - let's say 80 - and make sure every line of code you write is no longer than
that length. Pyzo lets you place an indicator in the editor at that location.

Good Naming Conventions
It's important to give your variables descriptive names that describe the data held by the
variable. Having descriptive, meaningful names will make understanding code much easier.

BAD
def isPrime(a):

if a < 2:
return False

for b in range(2, a):
if a % b == 0:

return True
return False

GOOD
def isPrime(num):

if num < 2:
return False

for factor in range(2, num):
if num % factor == 0:

return True
return False

There are a few cases where seemingly-meaningless variable names have gained meaning over
time, usually when they are shorthand for a longer word. For example, we often use x, y, and n
for numbers. These are okay to use when there's no greater meaning behind the variable.

Avoid Unnecessary Code
Unnecessary code is code that will never actually be run by Python, or code that Python
runs but never uses in a meaningful way (like a variable that is defined, then never
used). We also refer to this as dead code.

Unnecessary code won't actually harm your program, but it does make the program
more complicated to understand.

BAD
def isPrime(num):

if num < 2:
return False

end = num
for factor in range(2, num):

if num % factor == 0:
return True

else:
pass

return False
return

GOOD
def isPrime(num):

if num < 2:
return False

for factor in range(2, num):
if num % factor == 0:

return True
return False

Document Your Code
Finally, make sure to document your code using comments! We haven't talked much about when
to write comments. In general, comments are most useful when they explain something that is
not immediately obvious from the code itself.

Consider this code snippet, from isPrime. This is a good comment because it clarifies something
that might not be immediately obvious- we intentionally skipped num because it's okay for a
prime number to divide itself.

GOOD
def isPrime(num):

if num < 2:
return False

do not iterate over 1 or num because prime
numbers are divisible by themselves and 1
for factor in range(2, num):

if num % factor == 0:
return True

return False

Activity: Find Style Errors
You Do: What are some clarity style errors in this piece of code?

def sumToN(n):

tmp = 0

for abc in range(n):

tmp += abc

abc=abc+1

return tmp

Style – Robustness

Style Principles for Robustness
There are also several principles that will help you write robust code. This will
make your code easier to change and update over time, and decrease the
chance of bugs occurring.

We'll look at four general principles for writing robust code:

1. Avoid repetitive code
2. Avoid magic numbers
3. Join up related conditionals
4. Test all functions

Avoid Repetitive Code
First, try not to write repetitive code. This is code where similar logic is repeated over many lines instead of
being condensed into a single structure.

When you find yourself repeating code- and especially when you find yourself copying and pasting code –
look for the pattern and move it into a loop or a generalized action. Helper functions can be useful here too.

BAD
def coordToRow(x):

if x < 50:
return 0

elif x < 100:
return 1

elif x < 150:
return 2

elif x < 200:
return 3

GOOD
def coordToRow(x):

for row in range(4):
if x < row * 50:

return row

ALSO GOOD
def coordToRow(x):

return x // 50

Avoid Magic Numbers
Second, avoid using magic numbers. These are numbers used somewhere in an
algorithm for no clear reason, without being stored in a variable first.

Magic numbers are mainly a problem when it comes to updating code. Consider what
would be required to change the size of the grid cells in these two implementations.

BAD
def drawGrid(canvas, canvasSize):

for row in range(4):
top = row * 50
bottom = top + 50
for col in range(4):

left = col * 50
right = left + 50
canvas.create_rectangle(left, top,

right, bottom)

GOOD
def drawGrid(canvas, canvasSize):

rows = 4
cellSize = canvasSize / rows
for row in range(rows):

top = row * cellSize
bottom = top + cellSize
for col in range(rows):

left = col * cellSize
right = left + cellSize
canvas.create_rectangle(left, top,

right, bottom)

Non-Magic Numbers
Not every number is a magic number. For example, to get the ones digit of
a number you have to mod by 10. In this case, it's pretty clear why 10 is
used, and you're not likely to change it to anything else in the future. So
you don't need to store 10 in a variable.

0, 1, 2, and 10 are often (though not always) safe to use directly in code.

def getOnesDigit(num):
return num % 10

Join Up Conditionals
Third, make sure to join up conditionals as appropriate. If you have multiple conditional checks
that are happening in a row and only one of them should be visited, those checks should form
one if-elif-else block, not several independent ifs.

The main problem with not joining up related conditionals is that you might accidentally enter
more than one conditional branch if you aren't careful with the tests. It's just safer to combine
them all together.

BAD
def getSize(length):

size = ""
if length <= 38:

size = "small"
if 38 < length <= 40:

size = "medium"
if 40 < length:

size = "large"
return size

GOOD
def getSize(length):

size = ""
if length <= 38:

size = "small"
elif length <= 40:

size = "medium"
else:

size = "large"
return size

Test Your Functions
Finally, make sure to write test functions for each function you implement! Yes,
writing test cases takes time and can be tedious, but it will help you out a lot in
the long run.

Test functions are primarily useful at two points in time. The first is naturally
when you first write a function. The test function ensures that it's working the
way you want it to.

But test functions are also useful later on, if you need to modify a function.
Having an active test suite makes it easy to check whether a new modification
breaks any of the previous requirements of the program.

Activity: Find Style Errors
You Do: What are some robustness style errors in this piece of code?

def getSize(length):

size = "small"

if 38 < length and length <= 40:

size = "medium"

if 40 < length:

size = "large"

return size

Learning Goals
Identify whether a problem can be solved by following an algorithm,
applying a pattern, or problem solving

Apply general style principles to write clear and robust code

