
Advanced Programming
#3: Recursion
CS SCHOLARS – PROGRAMMING

Content Note
This lecture will reference indexing and slicing with lists and strings, as it
is hard to motivate recursion without data structures.

If you haven't yet learned about indexing and slicing, you can still attempt
to follow along- there are some examples that just use numbers as well.

2

Learning Objectives
Define and recognize base cases and recursive cases in recursive code

Read and write basic recursive code

Trace over recursive functions that use multiple recursive calls with
Towers of Hanoi

3

Concept of Recursion

4

Concept of Recursion
Recursion is a concept that shows up commonly in computing and in the
world.

Core idea: an idea X is recursive if X is used in its own definition.

Example: fractals; nesting dolls; your computer's file system

5

Why Use Recursion?
Recursion is a hard concept to master because it is different from how we
typically approach problem-solving.

But recursion also makes it possible for us to solve some problems with
simple, elegant algorithms. It also lets us think about how to structure data
in new ways.

We'll start by using recursion to solve very simple problems, then show
how it applies more naturally to complex problems.

6

Recursion in Algorithms
When we use recursion in algorithms, it's generally used to implement
delegation in problem solving, sometimes as an alternative to iteration.

To solve a problem recursively:

1. Find a way to make the problem slightly smaller

2. Delegate solving that problem to someone else

3. When you get the smaller-solution, combine it with solution to the
remaining part of the problem to get the answer

7

Example: Iteration vs. Recursion
How do we add the numbers on a deck of cards?

Iterative approach: keep track of the total so far, iterate over the cards, add
each to the total.

Recursive approach: take a card off the deck, delegate adding the rest of
the deck to someone else, then when they give you the answer, add the
remaining card to their sum.

8

Implementing Iteration
Let's look at how we'd add the deck of four cards using iteration.

Pre-Loop:

9

total 0

cards 5 2 7 3

Implementing Iteration
Let's look at how we'd add the deck of four cards using iteration.

First iteration:

10

total 0

i 0

cards

5

5 2 7 35 2 7 3

Implementing Iteration
Let's look at how we'd add the deck of four cards using iteration.

Second iteration:

11

total 5

i 0

cards

7

5 2 7 35 2 7 3

1

Implementing Iteration
Let's look at how we'd add the deck of four cards using iteration.

Third iteration:

12

total 7

i 1

cards

14

5 2 7 35 2 7 3

2

Implementing Iteration
Let's look at how we'd add the deck of four cards using iteration.

Fourth iteration:

13

total 14

i 2

cards

17

5 2 7 35 2 7 3

3

And we're done!

Iteration in Code
We could implement this in code with the following function:

def iterativeAddCards(cards):

total = 0

for i in range(len(cards)):

total = total + cards[i]

return total

14

Implementing Recursion
Now let's add the same deck of cards using recursion.

Start State:

15

total 0

cards 5 2 7 3

Implementing Recursion
Now let's add the same deck of cards using recursion.

Make the problem smaller:

16

total 0

cards 5 2 7 35 2 7 3

Implementing Recursion
Now let's add the same deck of cards using recursion.

Delegate that smaller problem:

17

total 0

cards 5 2 7 3

This is the Recursion
Genie. They can solve
problems, but only if
the problem has been
made slightly smaller
than the start state.

Implementing Recursion
Now let's add the same deck of cards using recursion.

Get the smaller problem's solution:

18

total 0

cards 5 2 7 3

12

Implementing Recursion
Now let's add the same deck of cards using recursion.

Combine the leftover solution with the smaller solution:

19

total 0

cards 5 2 7 3

125 +

17

And we're done!

Recursion in Code
Now let's implement the recursive approach in code.

def recursiveAddCards(cards):

smallerProblem = cards[1:]

smallerResult = ??? # how to call the genie?

return cards[0] + smallerResult

20

Base Cases and
Recursive Cases

21

Big Idea #1: The Genie is the Algorithm Again!
We don't need to make a new algorithm to implement the Recursion Genie.
Instead, we can just call the function itself on the slightly-smaller problem.

Every time the function is called, the problem gets smaller again. Eventually, the
problem reaches a state where we can't make it smaller. We'll call that the base
case.

22

2 7 3

7 3
3

5 2 7 3

Big Idea #2: Base Case Builds the Answer
When the problem gets to the base case, the answer is immediately known. For example, in adding a deck of
cards, the sum of an empty deck is 0.

That means the base case can solve the problem without delegating. Then it can pass the solution back to the
prior problem-solver and start the chain of solutions.

23

2 7 3

7 3
3

5 2 7 3

0

125 +17

03 +
37 +

102 +

Recursion in Code – Recursive Call
To update our recursion code, we'll take two steps. First, we need to add
the call to the function itself.

def recursiveAddCards(cards):

smallerProblem = cards[1:]

smallerResult = recursiveAddCards(smallerProblem)

return cards[0] + smallerResult

24

Recursion in Code – Base Case
Second, we add in the base case as an explicit instruction about what to do when
the problem cannot be made any smaller.

def recursiveAddCards(cards):

if cards == []:

return 0

else:

smallerProblem = cards[1:]

smallerResult = recursiveAddCards(smallerProblem)

return cards[0] + smallerResult

25

Every Recursive Function Includes Two Parts
The two big ideas we just saw are used in all recursive algorithms.

1. Base case(s) (non-recursive):
One or more simple cases that can be solved directly (with no further work).

2. Recursive case(s):
One or more cases that require solving "simpler" version(s) of the original
problem.
By "simpler" we mean smaller/shorter/closer to the base case.

26

Identifying Cases in addCards(cards)
Let's locate the base case and recursive case in our example.

def recursiveAddCards(cards):

if cards == []:

return 0

else:

smallerProblem = cards[1:]

smallerResult = recursiveAddCards(smallerProblem)

return cards[0] + smallerResult

27

base case

recursive
case

Python Tracks Recursion with the Call Stack
Recall how we used the call stack to keep track of nested function calls.

Python also uses the call stack to track recursive calls!

Because each function call has its own set of local variables (which
includes function parameters), the values across functions don't get
confused.

28

Simplified Call Stack Representation

29

Activity: Base Case/Recursive Case
Let's write an algorithm that takes a binary number (like "10110") and
converts it to decimal (21). Our algorithm will only use recursion; no loops
allowed.

You do: in general terms, what is the base case for this problem? And in
the recursive case, how do we make the problem smaller? You don't need
to write code, just consider the algorithmic cases.

Hint: consider how you converted binary to decimal in the advanced
content for week1.

30

Activity Solution
Base case: when there's a single digit, you can convert that digit to an
integer and return it.

Recursive case: slice the first number off, turn it into an int, and multiply it
by 2len(num)-1. Then recurse over the rest of the number and add the two
values together.

Alternate Recursive case: slice the last number off. Recurse over the rest
of the number and multiply the result by 2. Cast the last number to an int
and add it to the result.

31

Programming with
Recursion

32

General Recursive Form
Thinking of recursive algorithms can be tricky at first. However, most of the simple
recursive functions you write can take the following form:

def recursiveFunction(problem):

if problem == ???: # base case is the smallest value

return ____ # something that isn't recursive

else:

smallerProblem = ??? # make the problem smaller

smallerResult = recursiveFunction(smallerProblem)

return ____ # combine with the leftover part

33

Important: Return Types Must Match!
When you write a recursive function, always remember that the base case
must return the same type as the recursive case.

If the types are different, you'll have a problem combining the next step
with the smaller-result because the type of the smaller-result will be
inconsistent.

Also make sure that you always provide the correct type in the argument
given to the recursive function call. It must match the type of the
function's parameter.

34

Example: factorial
Assume we want to implement
factorial recursively (takes an int,
returns an int). Recall that:

x! = x*(x-1)*(x-2)*...*2*1

We could rewrite that as...

x! = x * (x-1)!

What's the base case?

x == 1

What's the smaller problem?

x - 1

How to combine it?

Multiply result of (x-1)! by x

35

Writing Factorial Recursively
We can take these algorithmic components and combine them with the general
recursive form to get a solution.

def factorial(x):

if x == 1: # base case

return 1 # something not recursive

else:

smaller = factorial(x - 1) # recursive call

return x * smaller # combination

36

Sidebar: Infinite Recursion Causes RecursionError
What happens if you call a function on an input that will never reach the base case? It
will keep calling the function forever!

Example: factorial(5.5)

Python keeps track of how many function calls have been added to the stack. If it sees
there are too many calls, it raises a RecursionError to stop your code from repeating
forever.

If you encounter a RecursionError, check a) whether you're making the problem
smaller each time, and b) whether the input you're using will ever reach the base case.

37

Simplified Infinite Recursion

38

Example: countVowels(s)
Let's do another example. Write the function countVowels(s) that takes a
string and recursively counts the number of vowels in that string, returning an
int. For example, countVowels("apple")would return 2.

def countVowels(s):

if ____________: # base case

return ________

else: # recursive case

smaller = countVowels(_______)

return ______________

39

Example: countVowels(s)
We make the string smaller
by removing one letter.

Change the code's behavior
based on whether the letter is
a vowel or not.

def countVowels(s):

if s == "": # base case

return 0

else: # recursive case

smaller = countVowels(s[1:])

if s[0] in "AEIOU":

return 1 + smaller

else:

return smaller

40

Example: countVowels(s)
An alternative approach is to make multiple recursive cases based on the smaller part.

def countVowels(s):

if s == "": # base case

return 0

elif s[0] in "AEIOU": # recursive case

smaller = countVowels(s[1:])

return 1 + smaller

else:

smaller = countVowels(s[1:])

return smaller

41

Example: removeDuplicates(lst)
Let's do one final example. Write the function removeDuplicates(lst) that takes a
list of items and recursively generates a new list that contains only one of each unique
item from the original list. For example, removeDuplicates([1, 2, 1, 2, 3, 4,
3, 3]) might return [1, 2, 3, 4].

def removeDuplicates(lst):

if ____________: # base case

return ________

else: # recursive case

smaller = removeDuplicates(_______)

return ______________

42

Example: removeDuplicates(lst)
The recursive case
generates a list that holds
only unique elements.

Just check whether the
remaining element is
already in that list or not!

def removeDuplicates(lst):

if lst == []: # base case

return []

else: # recursive case

smaller = removeDuplicates(lst[1:])

if lst[0] in smaller:

return smaller

else:

return [lst[0]] + smaller

43

Activity: recursiveMatch(lst1, lst2)
You do: Write recursiveMatch(lst1, lst2), which takes two lists of equal
length and returns the number of indexes where lst1 has the same value as
lst2.

For example, recursiveMatch([4, 2, 1, 6], [4, 3, 7, 6]) should
return 2.

Note: you can index into and slice both lists at the same time!

Another note: when it comes to writing recursive code, be optimistic. Write a
solution that should work assuming the recursive call gives the proper result.

44

Activity Solution
def recursiveMatch(lst1, lst2):

if len(lst1) == 0:

return 0

else:

partialResult = recursiveMatch(lst1[1:], lst2[1:])

if lst1[0] == lst2[0]:

return partialResult + 1

else:

return partialResult

45

Multiple Recursive Calls

46

Multiple Recursive Calls
So far, we've used just one recursive call to build up a recursive answer.

The real conceptual power of recursion happens when we need more than
one recursive call!

Example: Fibonacci numbers
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, etc.

images from
Wikipedia

47

8 13 21

Code for Fibonacci Numbers
The Fibonacci number pattern goes as follows:

F(0) = 0

F(1) = 1

F(n) = F(n-1) + F(n-2), n > 1

def fib(n):

if n == 0 or n == 1:

return n

else:

return fib(n-1) + fib(n-2)

48

Two recursive calls!

Fibonacci Recursive Call Tree

fib(5)

fib(4) fib(3)

fib(3) fib(2) fib(2) fib(1)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(1) fib(0)

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

49

fib(1)

fib(1) fib(0)

fib(2)

fib(3)

fib(5)

fib(0)

fib(1) fib(0)fib(1)

fib(4)

fib(1)

fib(2)

fib(3) fib(2)

5

3

1

2

1 0

1 1

2

1 0

1

1 0

1

Fibonacci Recursive Call Tree

22
50

fib(0) = 0
fib(1) = 1
fib(n) = fib(n-1) + fib(n-2), n > 1

Another Example: Towers of Hanoi
Legend has it that long ago at a temple far away, a priest was led to a courtyard with 64
discs stacked in size order on a sacred platform.

The priest needed to move all 64 discs from this sacred platform to the second sacred
platform, but there was only one other place (let's say a sacred table) on which they
could temporarily place the discs.

The priest could move only one disc at a time, because they're heavy. And they could not
put a larger disc on top of a smaller disc at any time, because the discs were fragile.

According to the legend, the world would end when the priest finished their work.

How long will this task take?

51

Solving Hanoi – Use Recursion!

It's difficult to think of an iterative strategy to
solve the Towers of Hanoi problem. Thinking
recursively makes the task easier.

The base case is when you need to move one disc.
Just move it directly to the end platform.

Then, given N discs:

1. Delegate moving all but one of the discs to
the temporary platform.

2. Move the remaining disc to the end platform.

3. Delegate moving the all but one pile to the
end platform.

52

Solving Hanoi - Code
Prints instructions to solve Towers of Hanoi and
returns the number of moves needed to do so.
def moveDiscs(start, tmp, end, discs):

if discs == 1: # 1 disc - move it directly
print("Move one disc from", start, "to", end)
return 1

else: # 2+ discs - move N-1 discs, then 1, then N-1
moves = 0
moves = moves + moveDiscs(start, end, tmp, discs - 1)
moves = moves + moveDiscs(start, tmp, end, 1)
moves = moves + moveDiscs(tmp, start, end, discs - 1)
return moves

result = moveDiscs("left", "middle", "right", 3)
print("Number of discs moved:", result)

53

Activity: Towers of Hanoi Steps
Our original question was: how many steps will it take to move 64 discs?

We can calculate this by asking a different question: if we add one disc to a
Towers of Hanoi set, how does that affect the total number of steps that
need to be taken?

54

Number of Moves in Towers of Hanoi
Every time we add another disc to the tower, it doubles the number of moves we
make.

It doubles because moving N discs takes moves(N-1) + 1 + moves(N-1) total
moves.

We can approximate the number of moves needed for the 64 discs in the story
with 264. That's 1.84 x 1019 moves!

If we estimate each move takes one second, then that's (1.84 x 1019) /
(60*60*24*365) = 5.85 x 1011 years, or 585 billion years! We're safe for now.

55

Learning Objectives
Define and recognize base cases and recursive cases in recursive code

Read and write basic recursive code

Trace over recursive functions that use multiple recursive calls with
Towers of Hanoi

56

