
#4-1: Strings and Lists
CS SCHOLARS – PROGRAMMING



Hw3 Overview
◦ Reminder: check your feedback!

◦ If you're having a hard time with the material, reach out to Prof. Kelly and/or 
the TAs to arrange one-on-one review meetings

◦ Group review: isPowerful
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Learning Goals
Read and write code using lists

Index and slice into strings/lists to break them up into parts

Use for loops to loop over strings/lists by index or component

Use string/list methods to call functions directly on values
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String and List Syntax
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String Syntax
We introduced strings as a core datatype in Week 1. Strings are defined as text 
inside of quotes.

s = "Hi everyone!"

We can concatenate strings together, and we can also repeat strings with 
multiplication.

"ABC" + "DEF" # "ABCDEF"

"HA" * 3 # "HAHAHA"
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Strings are Collections of Characters
Unlike numbers and Booleans, strings can be broken down into individual parts 
(characters). We say that a string is a sequence of characters. This is a core part of how 
they're represented in Python.

We can use a special operator called in to see whether an individual part occurs in the 
string. This returns a Boolean.

"e" in "Hello" # True

"W" in "CRAZY" # False

What if we want to store a sequence of some other datatype in a single value?
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Lists are Containers for Data
A list is a new data type that holds a sequence of data values.

Example: a sign-in sheet for a class.

Lists make it possible for us to assemble and analyze a collection of data 
using only one variable.
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Sign In Here
0. Elena
1. Max
2. Eduardo
3. Iyla
4. Ayaan



List Syntax
We use square brackets to set up a list in Python.

a = [ ] # empty list

b = [ "uno", "dos", "tres" ] # list with three strings

c = [ 1, "dance", 4.5 ] # lists can have mixed types
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Basic List Operations
Lists share most of their basic operations with strings.

a = [ 1, 2 ] + [ 3, 4 ] # concatenation – [ 1, 2, 3, 4]

b = [ "a", "b" ] * 2 # repetition – [ "a", "b", "a", "b" ]

d = 4 in [ "a", "b", 1, 2 ] # membership – False 
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Example: Using Lists
We could write a bit of code to construct a list of the numbers from 1 to 
10.

lst = [ ]

for i in range(1, 11):

lst = lst + [i] # concatenate to end

print(lst)
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Activity: Evaluate the Code
You do: what will each of the following code snippets evaluate to?

[ 5 ] * 3

"A" in "easy"

[ 1 ] + [ ] + [ "B" ]
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Indexing and Slicing
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Strings are Made of Characters
While problem solving, we'll often want to access the individual parts of strings, 
lists, and other sequences. For example, how can we access a specific character 
in a string?

First, we need to determine what each character's position is. Python assigns 
integer positions in order, starting with 0.
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S T E L L A

0 1 2 3 4 5

STELLA



Getting Values By Location
If we know a character's position, Python will let us access that character directly from the string. 
Use square brackets with the integer position in between to get the character. This is called 
indexing.

s = "STELLA"
c = s[2] # "E"

The same thing works with lists!

lst = [ 15, 110 ]
lst[1] # 110

We can get the number of characters in a string or list with the built-in function len(s). This 
function will come in handy soon!
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Common Indexes
How do we get the first character in a string?
s[0]

How do we get the last element in a list?
lst[len(lst) - 1]

What happens if we try an index outside of the string/list?

s[len(s)] # runtime error
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Activity: Guess the Index
You do: Given the string "abc123", what is the index of...

"a"?

"c"?

"3"?
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Slicing Produces a Substring/Subset
We can also get a whole substring from a string or subset from a list by specifying 
a slice.

Slices are exactly like ranges – they can have a start, an end, and a step. But slices 
are represented as numbers inside of square brackets, separated by colons.

s = "abcde"

print(s[2:len(s):1])   # prints "cde"

print(s[0:len(s)-1:1]) # prints "abcd"

print(s[0:len(s):2])   # prints "ace"
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Slicing Shorthand
Like with range, we don't always need to specify values for the start, end, and 
step. These three parts have default values: 0 for start, len(var) for end, and 1
for step. But the syntax to use default values looks a little different.

lst[:] and lst[::] are both the list itself, unchanged

lst[1:] is the list without the first element (start is 1)

lst[:len(lst)-1] is the list without the last character (end is len(lst)-1)

lst[::3] is every third element of the list (step is 3)
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Activity: Find the Slice
You do: Given the list

[ 2, 4, "t", "r", 3.4, 8.1, 23, "okay", 110, "woo" ]

what slice would we need to get the sublist [ "t", 8.1, 110 ]?
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Looping with Sequences
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Looping Over Sequence Indexes
Now that we have indexes and slices, we can loop over the characters in a string or the elements in a list by 
visiting each index in the value in order.

The sequence's first index is 0 and the last index is len(var) - 1. Use range(len(var)).

s = "Hello World"

for i in range(len(s)):

print(i, s[i])

lst = [ "What", "a", "nice", "day!" ]

for i in range(len(lst)):

print(i, lst[i])
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Example: Looping over Lists
We can develop algorithms using loops over strings and lists whenever we 
need to visit each index in the string/list to solve a problem. For example, 
the following loop sums all the values in prices.

total = 0

for i in range(len(prices)):

total = total + prices[i]

print(total)
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Looping Over Sequences Directly
If we don't care about where values are located in a sequence, we actually don't
need to use a range in the for loop. We can loop over the parts of a sequence 
directly by providing the value instead of a range.

for <itemVariable> in <sequenceValue>:
<itemActionBody>

For example, if we run the following code, it will print out each string in the list 
with an exclamation point after it.

wordlist = [ "Hello", "World" ]
for word in wordList:

print(word + "!")
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Example: Looping over Strings
Another example – how do we count the number of exclamation points in a 
string? We don't need the indexes, so we can loop over the string directly.

s = "Wow!! This is so! exciting!!!"

count = 0

for c in s:

if c == "!":

count = count + 1

print(count) # 6
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Choosing Loops
How do you decide whether to loop over a range or loop over the value directly? Think about 
whether you need to know where the parts are located in the sequence.

For example – how would you check whether a string is a palindrome (the same front-to-back as 
it is back-to-front)? Use a range so that you can use the index variable as both the front index and 
the back index offset.

def isPalindrome(s):

for i in range(len(s)):

if s[i] != s[len(s) - 1 - i]:

return False

return True

25



Activity: findMax(lst)
Write a function findMax(lst) which takes a list of numbers and 
returns the largest number in the list.

Hint: consider what variables you'll need to keep track of, and what type 
of loop you should use.
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Methods
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Methods Are Called Differently
Most string and list built-in functions (and data structure functions in general) work differently 
from other built-in functions. Instead of writing:

isdigit(s)

write:

s.isdigit()

This tells Python to call the built-in string function isdigit on the string s. It will then return a 
result normally. We call this kind of function a method, because it belongs to a data structure.

This is how our Tkinter methods work too! create_rectangle is called on canvas, which is a 
data structure.
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Don't Memorize- Use the API!
There is a whole library of built-in string and list methods that have already been written; you can 
find them at 

docs.python.org/3/library/stdtypes.html#string-methods

and

docs.python.org/3/tutorial/datastructures.html#more-on-lists

We're about to go over a whole lot of potentially useful methods, and it will be hard to memorize 
all of them. Instead, use the Python documentation to look for the name of a function that you 
know probably exists.

If you can remember which basic actions have already been written, you can always look up the 
name and parameters when you need them.
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https://docs.python.org/3.8/library/stdtypes.html#string-methods
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists


Some Methods Return Information
Some methods return information about the value.

s.isdigit(), s.islower(), and s.isupper()
return True if the string is all-digits, all-lowercase, or 
all-uppercase, respectively.

s.count(x) and lst.count(x) return the 
number of times the subpart x occurs in s or lst.

s.index(x) and lst.index(x) return the index 
of the subpart x in s or lst, or raise an error if it 
doesn't occur in the value.

s = "hello"

lst = [10, 20, 30, 40, 50]

s.isdigit() # False

s.islower() # True

"OK".isupper() # True

s.count("l") # 2

lst.count(20) # 1

s.index("o") # 4

lst.index(5) # ValueError!
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Example: Checking a String
As an example of how to use methods, let's write a function that returns 
whether or not a string holds a capitalized name. The first letter of the 
name must be uppercase and the rest must be lowercase.

def formalName(s):

return s[0].isupper() and s[1:].islower()
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Activity: Evaluate the Code
You do: what will each of the following code snippets evaluate to?

"Yay".islower()

lst = [4, 8, 10, 8, 6, 4]

lst.count(4)

lst.index(4)
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Some Methods Create New Values
Other string methods return a new value based on 
the original.

s.lower() and s.upper() return a new string 
that is like the original, but all-lowercase or all-
uppercase, respectively.

s.replace(a, b) returns a new string where all 
instances of the string a have been replaced with the 
string b.

s.strip() returns a new string with excess 
whitespace (spaces, tabs, newlines) at the front and 
back removed.

s = "Hello"

a = s.lower() # a = "hello"

b = s.upper() # b = "HELLO"

c = s.replace("l", "y")

# c = "Heyyo"

d = "   Hi there ".strip()

# d = "Hi there"

33



Some Methods Change Data Types
Finally, some methods let you convert between 
strings and lists as needed.

s.split(c) splits up a string into a list of strings 
based on the separator character, c. 

c.join(lst) joins a list of strings together into a 
single string, with the string c between each pair.

e = "one,two,three".split(",")

# e = [ "one", "two", "three" ]

f = "-".join(["ab", "cd", "ef"])

# f = "ab-cd-ef"
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Example: Making New Strings
We can use these new methods to make a silly password-generating function.

def makePassword(phrase):

phrase2 = phrase.lower()

phrase3 = phrase2.replace("a", "@").replace("o", "0")

return phrase3
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Activity: getFirstName(fullName)
You do: write the function getFirstName(fullName), which takes a 
string holding a full name (in the format "Farnam Jahanian") and 
returns just the first name. You can assume the first name will either be 
one word or will be hyphenated (like "Soo-Hyun Kim").

You'll want to use a method and/or an operation in order to isolate the 
first name from the rest of the string.
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Learning Goals
Read and write code using lists

Index and slice into strings/lists to break them up into parts

Use for loops to loop over strings/lists by index or component

Use string/list methods to call functions directly on values
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