
#4-1: Strings and Lists
CS SCHOLARS – PROGRAMMING

Hw3 Overview
◦ Reminder: check your feedback!

◦ If you're having a hard time with the material, reach out to Prof. Kelly and/or
the TAs to arrange one-on-one review meetings

◦ Group review: isPowerful

2

Learning Goals
Read and write code using lists

Index and slice into strings/lists to break them up into parts

Use for loops to loop over strings/lists by index or component

Use string/list methods to call functions directly on values

3

String and List Syntax

4

String Syntax
We introduced strings as a core datatype in Week 1. Strings are defined as text
inside of quotes.

s = "Hi everyone!"

We can concatenate strings together, and we can also repeat strings with
multiplication.

"ABC" + "DEF" # "ABCDEF"

"HA" * 3 # "HAHAHA"

5

Strings are Collections of Characters
Unlike numbers and Booleans, strings can be broken down into individual parts
(characters). We say that a string is a sequence of characters. This is a core part of how
they're represented in Python.

We can use a special operator called in to see whether an individual part occurs in the
string. This returns a Boolean.

"e" in "Hello" # True

"W" in "CRAZY" # False

What if we want to store a sequence of some other datatype in a single value?

6

Lists are Containers for Data
A list is a new data type that holds a sequence of data values.

Example: a sign-in sheet for a class.

Lists make it possible for us to assemble and analyze a collection of data
using only one variable.

7

Sign In Here
0. Elena
1. Max
2. Eduardo
3. Iyla
4. Ayaan

List Syntax
We use square brackets to set up a list in Python.

a = [] # empty list

b = ["uno", "dos", "tres"] # list with three strings

c = [1, "dance", 4.5] # lists can have mixed types

8

Basic List Operations
Lists share most of their basic operations with strings.

a = [1, 2] + [3, 4] # concatenation – [1, 2, 3, 4]

b = ["a", "b"] * 2 # repetition – ["a", "b", "a", "b"]

d = 4 in ["a", "b", 1, 2] # membership – False

9

Example: Using Lists
We could write a bit of code to construct a list of the numbers from 1 to
10.

lst = []

for i in range(1, 11):

lst = lst + [i] # concatenate to end

print(lst)

10

Activity: Evaluate the Code
You do: what will each of the following code snippets evaluate to?

[5] * 3

"A" in "easy"

[1] + [] + ["B"]

11

Indexing and Slicing

12

Strings are Made of Characters
While problem solving, we'll often want to access the individual parts of strings,
lists, and other sequences. For example, how can we access a specific character
in a string?

First, we need to determine what each character's position is. Python assigns
integer positions in order, starting with 0.

13

S T E L L A

0 1 2 3 4 5

STELLA

Getting Values By Location
If we know a character's position, Python will let us access that character directly from the string.
Use square brackets with the integer position in between to get the character. This is called
indexing.

s = "STELLA"
c = s[2] # "E"

The same thing works with lists!

lst = [15, 110]
lst[1] # 110

We can get the number of characters in a string or list with the built-in function len(s). This
function will come in handy soon!

14

Common Indexes
How do we get the first character in a string?
s[0]

How do we get the last element in a list?
lst[len(lst) - 1]

What happens if we try an index outside of the string/list?

s[len(s)] # runtime error

15

Activity: Guess the Index
You do: Given the string "abc123", what is the index of...

"a"?

"c"?

"3"?

16

Slicing Produces a Substring/Subset
We can also get a whole substring from a string or subset from a list by specifying
a slice.

Slices are exactly like ranges – they can have a start, an end, and a step. But slices
are represented as numbers inside of square brackets, separated by colons.

s = "abcde"

print(s[2:len(s):1]) # prints "cde"

print(s[0:len(s)-1:1]) # prints "abcd"

print(s[0:len(s):2]) # prints "ace"

17

Slicing Shorthand
Like with range, we don't always need to specify values for the start, end, and
step. These three parts have default values: 0 for start, len(var) for end, and 1
for step. But the syntax to use default values looks a little different.

lst[:] and lst[::] are both the list itself, unchanged

lst[1:] is the list without the first element (start is 1)

lst[:len(lst)-1] is the list without the last character (end is len(lst)-1)

lst[::3] is every third element of the list (step is 3)

18

Activity: Find the Slice
You do: Given the list

[2, 4, "t", "r", 3.4, 8.1, 23, "okay", 110, "woo"]

what slice would we need to get the sublist ["t", 8.1, 110]?

19

Looping with Sequences

20

Looping Over Sequence Indexes
Now that we have indexes and slices, we can loop over the characters in a string or the elements in a list by
visiting each index in the value in order.

The sequence's first index is 0 and the last index is len(var) - 1. Use range(len(var)).

s = "Hello World"

for i in range(len(s)):

print(i, s[i])

lst = ["What", "a", "nice", "day!"]

for i in range(len(lst)):

print(i, lst[i])

21

Example: Looping over Lists
We can develop algorithms using loops over strings and lists whenever we
need to visit each index in the string/list to solve a problem. For example,
the following loop sums all the values in prices.

total = 0

for i in range(len(prices)):

total = total + prices[i]

print(total)

22

Looping Over Sequences Directly
If we don't care about where values are located in a sequence, we actually don't
need to use a range in the for loop. We can loop over the parts of a sequence
directly by providing the value instead of a range.

for <itemVariable> in <sequenceValue>:
<itemActionBody>

For example, if we run the following code, it will print out each string in the list
with an exclamation point after it.

wordlist = ["Hello", "World"]
for word in wordList:

print(word + "!")

23

Example: Looping over Strings
Another example – how do we count the number of exclamation points in a
string? We don't need the indexes, so we can loop over the string directly.

s = "Wow!! This is so! exciting!!!"

count = 0

for c in s:

if c == "!":

count = count + 1

print(count) # 6

24

Choosing Loops
How do you decide whether to loop over a range or loop over the value directly? Think about
whether you need to know where the parts are located in the sequence.

For example – how would you check whether a string is a palindrome (the same front-to-back as
it is back-to-front)? Use a range so that you can use the index variable as both the front index and
the back index offset.

def isPalindrome(s):

for i in range(len(s)):

if s[i] != s[len(s) - 1 - i]:

return False

return True

25

Activity: findMax(lst)
Write a function findMax(lst) which takes a list of numbers and
returns the largest number in the list.

Hint: consider what variables you'll need to keep track of, and what type
of loop you should use.

26

Methods

27

Methods Are Called Differently
Most string and list built-in functions (and data structure functions in general) work differently
from other built-in functions. Instead of writing:

isdigit(s)

write:

s.isdigit()

This tells Python to call the built-in string function isdigit on the string s. It will then return a
result normally. We call this kind of function a method, because it belongs to a data structure.

This is how our Tkinter methods work too! create_rectangle is called on canvas, which is a
data structure.

28

Don't Memorize- Use the API!
There is a whole library of built-in string and list methods that have already been written; you can
find them at

docs.python.org/3/library/stdtypes.html#string-methods

and

docs.python.org/3/tutorial/datastructures.html#more-on-lists

We're about to go over a whole lot of potentially useful methods, and it will be hard to memorize
all of them. Instead, use the Python documentation to look for the name of a function that you
know probably exists.

If you can remember which basic actions have already been written, you can always look up the
name and parameters when you need them.

29

https://docs.python.org/3.8/library/stdtypes.html#string-methods
https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

Some Methods Return Information
Some methods return information about the value.

s.isdigit(), s.islower(), and s.isupper()
return True if the string is all-digits, all-lowercase, or
all-uppercase, respectively.

s.count(x) and lst.count(x) return the
number of times the subpart x occurs in s or lst.

s.index(x) and lst.index(x) return the index
of the subpart x in s or lst, or raise an error if it
doesn't occur in the value.

s = "hello"

lst = [10, 20, 30, 40, 50]

s.isdigit() # False

s.islower() # True

"OK".isupper() # True

s.count("l") # 2

lst.count(20) # 1

s.index("o") # 4

lst.index(5) # ValueError!

30

Example: Checking a String
As an example of how to use methods, let's write a function that returns
whether or not a string holds a capitalized name. The first letter of the
name must be uppercase and the rest must be lowercase.

def formalName(s):

return s[0].isupper() and s[1:].islower()

31

Activity: Evaluate the Code
You do: what will each of the following code snippets evaluate to?

"Yay".islower()

lst = [4, 8, 10, 8, 6, 4]

lst.count(4)

lst.index(4)

32

Some Methods Create New Values
Other string methods return a new value based on
the original.

s.lower() and s.upper() return a new string
that is like the original, but all-lowercase or all-
uppercase, respectively.

s.replace(a, b) returns a new string where all
instances of the string a have been replaced with the
string b.

s.strip() returns a new string with excess
whitespace (spaces, tabs, newlines) at the front and
back removed.

s = "Hello"

a = s.lower() # a = "hello"

b = s.upper() # b = "HELLO"

c = s.replace("l", "y")

c = "Heyyo"

d = " Hi there ".strip()

d = "Hi there"

33

Some Methods Change Data Types
Finally, some methods let you convert between
strings and lists as needed.

s.split(c) splits up a string into a list of strings
based on the separator character, c.

c.join(lst) joins a list of strings together into a
single string, with the string c between each pair.

e = "one,two,three".split(",")

e = ["one", "two", "three"]

f = "-".join(["ab", "cd", "ef"])

f = "ab-cd-ef"

34

Example: Making New Strings
We can use these new methods to make a silly password-generating function.

def makePassword(phrase):

phrase2 = phrase.lower()

phrase3 = phrase2.replace("a", "@").replace("o", "0")

return phrase3

35

Activity: getFirstName(fullName)
You do: write the function getFirstName(fullName), which takes a
string holding a full name (in the format "Farnam Jahanian") and
returns just the first name. You can assume the first name will either be
one word or will be hyphenated (like "Soo-Hyun Kim").

You'll want to use a method and/or an operation in order to isolate the
first name from the rest of the string.

36

Learning Goals
Read and write code using lists

Index and slice into strings/lists to break them up into parts

Use for loops to loop over strings/lists by index or component

Use string/list methods to call functions directly on values

37

