
#4-2: References and
Memory
CS SCHOLARS – PROGRAMMING

Learning Goals
Recognize whether two values have the same reference in memory

Recognize the difference between destructive vs. non-destructive
functions/operations

Use aliasing to write functions that destructively change lists

Read and write code using 2D lists

2

References and Memory

3

Computer Memory Holds Data
All data on your computer is eventually represented as bits (0s and 1s).
Your computer's memory is a very long sequence of bytes (8 bits), which
are interpreted in different ways to become different types. Each byte has
its own address.

When you write a Python program, every variable you create is associated
with a different segment of memory. The way variables connect to
memory becomes more complicated when we use data structures.

4

31 35 31 31 30 4B 65 6C C6 79 4D 61 72 67 61 72 65 74

0000 0004 0008 0012 0016

References are Memory Addresses
A reference (often called a pointer) is a specific address in memory. References
are used to connect variables to their values.

When we set a variable equal to a value, we keep the variable and value one step
apart. The variable only has access to a reference, which points to the value. If
Python goes to the reference's address, it can retrieve the value stored there.

5

s a b

Memory:

Variables:

Hello 4 3.5

s = "Hello"
a = 4
b = 3.5

Updating a Variable Changes the Reference
When we set a variable to a new value, Python makes a new data value
and reassigns the variable to reference the new value. It does not change
the old value in memory at all.

6

s

Hello Hello WorldMemory:

Variables:
s = "Hello"
s = s + " World"

Analogy: Lockers and Nametags
You can think of Python's memory as a
series of lockers, each with its own
number. The item inside a locker is the
data value it holds.

A variable is then a nametag sticker.
When you stick a nametag onto a
locker, it 'points to' the item in that
locker. If you move the nametag onto a
different locker, the original locker's
contents don't change.

7

Copying a Variable Copies the Reference
What happens when we set a new variable equal to an old one? We don't
need to create a new data value in a new memory address; Python just
copies the reference instead.

This is like taking a new nametag and putting it on the same locker as
another nametag.

8

s

Hello World

t

Memory:

Variables:
s = "Hello World"
t = s

Check References with is
If you want to check whether two variables share the same reference, you can
use the is operator. It returns True if two variables reference the same memory
and False otherwise.

a = "Hello"

b = a

c = "World"

a is b # True

a is c # False

9

Lists Take Up Adjacent Addresses
When we set a variable to a list (or another data structure), Python sets
aside a large place in memory for the data values it will hold.

By breaking up that large chunk of memory into parts, Python can assign
each value in the list a location, ordered sequentially.

x = [1, 2, 3]

10

x

1 2 3Memory:

Variables:

Technically each index also holds
a reference to a new location, but
that's out of scope for this course

Analogy: A List is a Locker With Shelves
You can think of the list memory as a
single locker (the starting reference)
broken up with several shelves.

Each shelf can hold its own item
(data value) and has its own
reference.

This allows us to change memory in
new and interesting ways.

11

Activity: Same Reference?
You do: after the code is set up as shown here, for each of the following variable pairs,
do they share the same reference or not?

a = 123
b = a
c = a
a = a * 2

a is b

a is c

b is c

12

List Modification

13

List Values Can Be Changed
Because of how lists are stored in memory, the values in a list can be
changed directly without reassigning the variable.

We can change a list by setting a list index to a new value, like how we
would set a variable to a value.

lst = ["a", "b", "c"]

lst[1] = "foo"

lst # ["a", "foo", "c"]

14

Some List Methods Change the List
We can also modify a list directly, to add or remove elements from it, using some
list methods. These methods change the list without using variable assignment
at all.

lst = [1, 2, "a"]

lst.append("b") # adds the element to the end of the list

lst # [1, 2, "a", "b"]

Note that we do not set lst = lst.append; the list is changed in place. In
fact, the append method returns None, not a list.

15

Example: getFactors(n)
Let's write a function that takes an integer and returns a list of all the factors of
that integer.

def getFactors(n):

factors = []

for num in range(1, n+1): # n is a possible factor

if n % num == 0:

factors.append(num)

return factors

16

Additional List Methods
Here are a few other useful list methods that change the list in place:

lst = [1, 2, "a"]

lst.insert(1, "foo") # inserts 2nd param into 1st param index

lst.remove("a") # removes the given element from the list once

lst.pop(0) # removes the element at given index from the list

17

Activity: longWordsOnly(words)
Write a function longWordsOnly(words) that takes a list of words
(strings) and returns a new list that only contains words that were longer
than 4 characters.

For example, longWordsOnly(["What", "a", "fabulous",
"day", "it", "is", "today"]) would return ["fabulous",
"today"].

Try using the append method to set up the new list instead of using list
concatenation!

18

Mutable vs Immutable
Values

19

Modifying Lists in Memory
How do these methods work? The large space set aside for the list values allows
Python to add and remove values from the list without running out of room in
memory. It's like having tons of empty shelves in the locker and putting the item
on one of them.

This makes it easy (and fast!) to locate a specific value based on its index.

x = [1, 2, 3]

x.append(7)

print(x[1])

20

1 2 3 7

x

Memory:

Variables:

Lists are Mutable; Strings are Immutable
We call data types that can be modified without reassignment this way mutable.
Data types that cannot be modified directly are called immutable.

All the other data types we've learned about so far – integers, floats, Booleans,
and strings – are immutable. In fact, if we try to set a string index to a new
character, we'll get an error. We have to set the entire variable equal to a new
value if we want to change the string.

s = "abc"

s[1] = "z" # TypeError

s = s[:1] + "z" + s[2:]

21

Copying Lists in Memory
We showed before that when we copy a variable into a new variable, the
reference is copied, not the value.

This is true for lists as well; an example is shown below.

22

x

1 2 3

yx = [1, 2, 3]
y = x

You do: what happens to the values in x and y if we add the line y.append(4)
to the end of this code snippet?

Memory:

Variables:

Reference-Sharing Lists Share Changes
When a direct action is done on a list, that action affects the data values, not the
variable. Any lists that share a reference with the original list will see the same changes!

We call lists that share a reference this way aliased.

23

x

1 2 3

y

4Memory:

Variables:
x = [1, 2, 3]
y = x
y.append(4)

Copying Variables vs. Copying Values
Two list variables won't be aliased just because they contain the same values.
Their references need to point to the same place for them to be aliased.

In the following example, the lack of a reference copy keeps the list z from being
aliased to x and y.

24

x

1 2 3

y

1 2 3

z

4

x = [1, 2, 3]
y = x
z = [1, 2, 3]
x.append(4) Memory:

Variables:

Destructive vs.
Non-destructive

25

Two Ways of Modifying Lists
Whenever we want to modify a list (by changing a value, adding a value, or
removing a value), we can choose to do so destructively or non-
destructively.

Destructive approaches change the data values without changing the
variable reference. Any aliases of the variable will see the change as well,
since they refer to the same list.

Non-destructive approaches make a new list, giving it a new reference.
This 'breaks' the alias and doesn't change the previously-aliased variables.

26

Destructive Methods are Efficient
Why would we ever want to use a destructive approach instead of a
simpler non-destructive approach?

Destructive approaches are more efficient. Instead of needing to copy all
the values into a new place in memory, you only change a small part of the
existing memory. This saves time and space in memory.

27

Two Ways to Add Values
How do we add a value to a list destructively? Use append, insert, or +=.

lst = ["A", "B", "C"]
lst.append("E")
lst.insert(0, "foo") # specifies where to add the value
lst += ["F", "G"] # Annoyingly different from lst = lst + ["F", "G"]

How do we add a value to a list non-destructively? Use variable assignment with list
concatenation, or assign to a new list.

lst = ["A", "B", "C"]
lst = lst + ["E"] # note that "E" needs to be in its own list
lst = lst[:len(lst)//2] + ["F"] + lst[len(lst)//2:]
newLst = ["A", "B", "C"]
newLst.append("bar") # destructive, but to a different list

28

Two Ways to Remove Values
How do we remove a value from a list destructively? Use remove or pop.

lst = ["A", "B", "C"]
lst.remove("A") # remove the value "A"
lst.pop(1) # remove the value at index 1

How do we remove a value from a list non-destructively? Use variable assignment with
list slicing.

lst = ["A", "B", "C"]
lst = lst[1:]
lst = lst[:len(lst)-1]

29

Break an Alias with List Concatenation
If you have two variables that are aliased and you don't want them to be aliased, you need to
'break' the alias between them. This is done by setting one of the variables equal to a new data
value with the same values as the original list.

The easiest way to do this is to concatenate the empty list to the original list. Python doesn't
recognize that the second list is empty, so it will create an entirely new list in memory.

a = ["A", "B", "C"]

b = a # a and b are aliased

a = a + [] # a now has a new reference, but the same values

a is b # False

30

Activity: Which Lists are Aliased?
At the end of this set of operations, which lists will be aliased? What values will each
variable hold?

a = [1, 2, "x", "y"]

b = a

c = [1, 2, "x", "y"]

d = c

a.pop(2)

b = b + ["woah"]

c[0] = 42

d.insert(3, "yowza")

31

Destructive Looping: for vs. while
It is a very bad idea to destructively add or
remove elements in a list while looping
over it with a for loop.

This will often lead to unexpected and bad
behavior because the range is only
calculated once.

lst = ["a", "a", "c", "d", "e"]

for i in range(len(lst)):

if lst[i] == "a" or \

lst[i] == "e":

lst.pop(i)

Instead, use a while loop if you're planning
to destructively change the list length. The
list length is reevaluated when the while
condition is checked each iteration.

lst = ["a", "a", "c", "d", "e"]

i = 0

while i < len(lst):

if lst[i] == "a" or \

lst[i] == "e":

lst.pop(i)

else:

i = i + 1

32

Destructive Looping: break to exit early
What if you want to destructively remove exactly one element from a list, then exit the
loop immediately before you remove any others?

It's possible to design a loop control variable to do this, but it's often easier to use the
break statement instead. As soon as the code reaches a break, it immediately exits the
loop. (If loops are nested, it only exits the innermost loop).

lst = ["a", "a", "c", "d", "e"]

for i in range(len(lst)):

if lst[i] == "a":

lst.pop(i)

break # exits immediately, only removes one "a"

33

Writing Destructive
Functions

34

Function Arguments/Parameters are Aliased
When you call a function with a mutable value as one of the arguments, that argument is aliased
to the function's parameter variable. The same reference is used for the original argument and
the parameter that the function uses.

This means that we can write our own functions that behave destructively, changing the data
values in the given list directly instead of making a new list. This is valuable when we work with
large datasets, as we usually don't want to copy all the values every time we make a change.

def foo(lst):
lst[1] = "bar"

x = [1, 2, 3]
print(foo(x)) # when lst is created, it copies x's reference
print(x) # now 2 has been replaced with "bar"

35

Destructive Functions Use Mutable Methods
When writing a destructive function, use index assignment and the mutable methods (append,
insert, pop, and remove) on the parameter list to change it as needed.

For example, the following code destructively doubles all the values in the given list of integers.
Note that the function need not return lst because the parameter lst and the argument x
refer to the same values. We usually have destructive functions return None as an indicator that
they're destructive.

def destructiveDouble(lst):
for i in range(len(lst)):

lst[i] = lst[i] * 2

x = [1, 2, 3]
destructiveDouble(x)
print(x)

36

Non-Destructive Functions Make New Lists
If you want to make a function that is not destructive, you should instead set up a new list and fill it
with the appropriate values. To be non-destructive, the parameters must not be changed.

The following code non-destructively creates a new list of all the doubles of values in the original list.
This function does need to return the result, as the parameter is not changed. After the call to the
function, the variable x will not have changed; y refers to the new list with all the values doubled.

def nonDestructiveDouble(lst):
result = []
for i in range(len(lst)):

result.append(lst[i] * 2)
return result

x = [1, 2, 3]
y = nonDestructiveDouble(x)
print(x, y)

37

Activity: makePositive(lst)
The following non-destructive function takes a list of integers and turns any negative values in the
list into their positive counterparts. Change the function so that it is destructive instead.

def makePositive(lst):

result = []

for i in range(len(lst)):

if lst[i] < 0:

result.append(lst[i] * -1)

else:

result.append(lst[i])

return result

38

2D Lists

39

2D Lists are Lists of Lists
We often need to work with data that is two-
dimensional, such as the coordinates on a grid,
values in a spreadsheet, or pixels on a screen.
We can store this type of data in a 2D list,
which is just a list that contains other lists.

For example, the 2D list to the right holds
population data, where each population
datapoint itself contains multiple data values
(city, county, and population).

40

Population List

0.

1.

2.

3.

4.

0. "Pittsburgh"
1. "Allegheny"
2. 302407

0. "Philadelphia"
1. "Philadelphia"
2. 1584981

0. "Allentown"
1. "Lehigh"
2. 123838

0. "Erie"
1. "Erie"
2. 97639

0. "Scranton"
1. "Lackawanna"
2. 77182

Syntax of 2D Lists
Setting up a 2D list is no different than setting up a 1D list; each inner list is one data value.

cities = [["Pittsburgh", "Allegheny", 302407],

["Philadelphia", "Philadelphia", 1584981],

["Allentown", "Lehigh", 123838],

["Erie", "Erie", 97639],

["Scranton", "Lackawanna", 77182]]

When indexing into a 2D list, the first square brackets index into a row and the second index into
a column. The length of a 2D list is the number of lists in the outer list.

cities[2] # ["Allentown", "Lehigh", 123838]

cities[2][1] # "Lehigh"

len(cities) # 5

41

Looping Over 2D Lists
We can loop over a 2D list the same way we loop over a list. Indexing into a list
once will produce an inner list. We'll need to index a second time to get a value.

def getCounty(cities, cityName):

for i in range(len(cities)):

entry = cities[i] # entry is a list

if entry[0] == cityName:

return entry[1]

return None # city not found

42

Looping Over All 2D List Elements
When you loop over a 2D list and want to access every element, you need to use nested for
loops. Often, the outer loop iterates over the indexes of the outer list (rows) and the inner loop
iterates over the indexes of the inner list (columns).

gameBoard = [["X", " ", "O"], [" ", "X", " "], [" ", " ", "O"]]

for row in range(len(gameBoard)): # each row is a list

boardString = ""

for col in range(len(gameBoard[row])): # each col is a string

boardString = boardString + gameBoard[row][col]

print(boardString) # separate rows on separate lines

43

Looping Over All 2D List Elements
We could have done this by looping directly over the board as well! This works because we don't
need to know where the icons are on the board- they get added to the string regardless.

gameBoard = [["X", " ", "O"], [" ", "X", " "], [" ", " ", "O"]]

for boardRow in gameBoard: # boardRow is a list

boardString = ""

for icon in boardRow: # icon is "X", "O", or " "

boardString = boardString + icon

print(boardString) # separate rows on separate lines

44

Activity: getTotalPopulation(cities)
Write the function getTotalPopulation(cities) that takes the city-information 2D list
from before and finds the total population of all cities in the list. Here's a list to test with:

cities = [["Pittsburgh", "Allegheny", 302407],

["Philadelphia", "Philadelphia", 1584981],

["Allentown", "Lehigh", 123838],

["Erie", "Erie", 97639],

["Scranton", "Lackawanna", 77182]]

Hint: note that the population is in the third column. What index corresponds to that?

45

Learning Goals
Recognize whether two values have the same reference in memory

Recognize the difference between destructive vs. non-destructive
functions/operations

Use aliasing to write functions that destructively change lists

Read and write code using 2D lists

46

