
#4-3: Data Analysis
CS SCHOLARS – PROGRAMMING

Learning Goals
Read and write data from files

Use built-in libraries to interpret protocols in files

Reformat data to find, add, remove, or reinterpret pre-existing data

Perform basic analyses on data, including calculating statistics and
probabilities, to answer simple questions

2

Data Analysis

3

Data Analysis Gains Insights on Data
Data Analysis is the process of using computational or statistical methods
to gain insight about data.

Data Analysis is used widely by many organizations to answer questions in
many different domains. It plays a role in everything from advertising and
fraud detection to airplane routing and political campaigns.

Data Analysis is also used widely in logistics, to determine how many
people and how much stock is needed and where they should go.

4

Data Analysis Process
The full process of data
analysis involves multiple steps
to acquire data, prepare it,
analyze it, and make decisions
based on the results.

We'll focus mainly on three
steps: Data Cleaning,
Exploration & Visualization,
and Statistics & Analysis

5

Data
Collection

Data
Cleaning

Exploration
&

Visualization

Statistics
&

Analysis

Insight &
Decision
Making

Hypothesis
Generation

Presentation
&

Action

Data is Complicated
Before diving into data analysis, we have to ask a general question. What
does data look like?

Data varies greatly based on the context; every problem is unique.

Example: let's collect our own data! Fill out the following short survey:

https://forms.gle/PAD8NMt6LZHXJnQ2A

6

https://forms.gle/PAD8NMt6LZHXJnQ2A

Data is Messy
Let's look at the results of our ice cream
data.

Most likely, there are some irregularities in
the data. Some flavors are capitalized;
others aren't. Some flavors might have
typos. Some people who don't like ice
cream might have put 'n/a', or 'none', or
'I'm lactose intolerant'. And some flavors
might have multiple names – 'green tea' vs.
'matcha'.

Data Cleaning is the process of taking raw
data and smoothing out all these
differences. It can be partially automated
(all flavors are automatically made
lowercase) but usually requires some level
of human intervention.

7

Reading Data from Files

8

Reading Data From Files
Once data has been cleaned, we need to access that data in a Python
program. That means we need to read data from a file.

Recall that all the files on your computer are organized in directories, or
folders. When you're working with files, always make sure you know which
sequence of folders your file is located in. A sequence of folders from the
top-level of the computer to a specific file is called a filepath.

9

Opening Files in Python
To interact with a file in Python we'll need to access its contents. We can do this
by using the built-in function open(filepath). This will create a File object
which we can read from or write to.

f = open("sample.txt")

open() can either take a full filepath or a relative path (relative from the
location of the python file). It's usually easiest to put the file you want to
read/write in the same directory as the python file so you can simply refer to the
filename directly. (In repl.it, you can do this by uploading a file to the same
repository as your code file).

10

Reading and Writing from Files
When we open a file we need to specify whether we plan to read from or write to the file.
This will change the mode we use to open the file.

f = open("sample.txt", "r") # read mode

lines = f.readlines() # reads the lines of a file as a list of strings

or

text = f.read() # reads the whole file as a single string

f = open("sample2.txt", "w") # write mode

f.write(text) # writes a string to the file

Only one instance of a file should be kept open at a time, so you should always close a file
once you're done with it.

f.close()

11

Be Careful When Programming With Files!
WARNING: when you write to files in Python backups are not preserved. If
you overwrite a file, the previous contents are gone forever. Be careful
when writing to files.

WARNING: if you have multiple Python files open in Pyzo and you try to
open a file from a relative path, Pyzo might get confused. To be safe, when
working with files, only have one file open in Pyzo at a time. And make
sure to 'Run File as Script' when working with files.

12

Activity: Read a File
You do: Download the file chat.txt
from the schedule page and move it to
the same folder as a python script. Try
using open and read to open the file
and read the contents, then print the
contents.

If Python says a filename doesn't exist
when you're sure that it does, go to
office hours or message the TAs to get
help; there's a few common problems
that can occur.

Common file reading issues:
◦ make sure the file is actually in the

same directory as your python script
◦ make sure the filename you've

entered is actually the filename
(including the filetype at the end!)

◦ make sure you're using Run File as
Script (execute usually won't work)

◦ make sure only one file is open in
Pyzo

13

Sidebar: os library for advanced files
The os library lets you directly interact with your computer's operating system.
You can use this library to further modify files on your computer. The following
functions are especially useful:

os.listdir(path) # returns a list of files in the folder

os.path.exists(path) # returns True if the given path exists

os.rename(a, b) # changes file a's name to b

os.remove(path) # deletes the file

14

Special Characters
As we start working with file text, we'll need to account for characters that are
hard to represent in string values. These include the enter character (newline)
and the tab character (tab). We can't type these directly into a string, so we'll use
a shorthand instead:

"ABC\nDEF" # newline, or pressing enter/return

"ABC\tDEF" # tab

The \ character is a special character that indicates an escape sequence. It is
modified by the letter that follows it. These two symbols are treated as a single
character by the interpreter.

15

File Libraries

16

Data has Many Different Formats
Once you've read data from a file you need to determine what the
protocol of that data is. That will inform how you interpret the data in
Python.

There are lots of different protocols! We'll just look at one for now – CSV.
We'll also talk about how to deal with common data formats (like
timestamps) and unusually formatted data.

17

CSV Files are Like Spreadsheets
Comma-Separated Values (CSV) files
store data in two dimensions. They're
effectively spreadsheets.

The data we collected on ice cream was
downloaded as a CSV. If we open it in a
plain text editor, you can see that
values are separated by commas.

These files don't always have to use
commas as separators, but they do
need a delimiter to separate values
(maybe spaces or tabs).

18

Reading CSV Data into Python
We could open a CSV file as plaintext and
parse the file as we read it. Or we could
use the csv library to make reading the file
easier.

This library creates a Reader object out of a
File object. This can be automatically
converted to a 2D list, with rows separated
by newlines and columns separated by the
delimiter.

We can pass a keyword argument
delimiter into csv.reader to change
the delimiter.

import csv

f = open("icecream.csv", "r")
reader = csv.reader(f)

data = list(reader)

print(data)

f.close()

19

Writing CSV Data to a File
What if we've processed data in a 2D list
and want to save it as a CSV file?

Create a CSV Writer object based on a file.
You can use it to write one row at a time
using writer.writerow(row).

Again, the delimiter can be set to values
other than a comma by updating the
optional parameter delimiter.

import csv

data = [["chocolate", "mint chocolate",

"peppermint"],

["vanilla", "matcha", "coffee"],

["strawberry", "mango", "cherry"]]

need newline="" to avoid double newlines

f = open("results.csv", "w", newline="")

writer = csv.writer(f)

for row in data:

writer.writerow(row)

f.close()

20

Activity: Parse the ice cream data
You do: download the icecream.csv file and try to open and read it
using the csv library. Load the data into a 2D list variable and try printing
it out.

21

datetime Library
If you're working with data that includes
timestamps, the datetime module is useful
for parsing information out of the timestamp.

There are functions that let you get the day,
month, hour, minute, or whatever else you
might want out of a timestamp. You can also
convert timestamps between different
formats (like "mm/dd/yy" to "dd-mm-
yyyy").

You can also get the timestamp at the
moment the line of code runs. This is useful
when you're generating log files.

import datetime

day = datetime.date.fromisoformat("2020-01-12")

datetime.date(2020, 1, 12)

day.strftime("%d-%m-%y") # 12-01-2020

datetime.date.today() # day, month, year

datetime.date.today().month # just month

datetime.datetime.now()

also hour, minute, seconds

22

Reading Plaintext Data
A lot of the data we work with might not fit nicely into a known format like
CSV. If we can read this data in a simple text editor, we call this plaintext
data.

To work with plaintext, you need to identify what kinds of patterns exist in
the data and use that information to structure it. The patterns you identify
may depend on which question you're trying to answer.

23

Reformatting

24

Questions to Ask
When parsing data in a plaintext file, start by identifying the pattern; then
ask yourself a few questions about that pattern.

◦ Does the pattern occur across lines, or some other delimiter?

◦ Where is the information in a single line/section?

◦ What comes before or after the information you want?

25

Tools to Use
Once you've identified where the information is located, use string slicing and string
methods to separate out the information you need.

Slicing (s[start:end:step]) can be used to remove parts of the data that are
unnecessary.

The split method (s.split(".")) can be used to break up data that is separated by a
known delimiter.

The index method (s.index(":")) can be used to find the location of the beginning or
end of a section. That can be combined with slicing or splitting to isolate the needed
data.

The strip method (s.strip()) can be used to remove whitespace (spaces, tabs, and
newlines) from the front and back of a string. This is useful for isolating the core text of a
string.

26

Example: Parsing a Chat Log
chat.txt is a dataset
based on a chat log from a
class. (All student names
have been modified to
preserve student privacy).

How could we get the
names of everyone who
participated in the chat?
What's the pattern?

14:54:28 From Malika : Could I use recursion
for AuthorMap?

14:56:03 From Ed : yep

15:00:22 From Arman : what is str.digits?

15:01:21 From Margaret Reid-Miller to
Kelly Rivers(Privately) : We only hear the music when
you speak

15:08:31 From Ed : how would you know if it
were O(n**.5)?

27

Example: Parsing a Chat Log
Each message occurs on an individual
line; split the text based on newlines
("\n").

"From" occurs before each name and
" : " occurs afterwards. Index those
indices and slice based on them.

Use strip to clear extra whitespace.

f = open("chat.txt", "r")
text = f.read()
f.close()

people = []
for line in text.split("\n"):

start = line.index("From") + \
len("From")

line = line[start:]
end = line.index(" : ")
line = line[:end]
line = line.strip()
people.append(line)

print(people)

28

Example: Parsing a Chat Log
A few lines don't match the pattern;
account for those too.

If statements are useful when
something breaks a pattern.

...

line = line[:end]

if "(Privately)" in line:

end = line.index("to")

line = line[:end]

line = line.strip()

...

29

Activity: getMessages(text, name)
You do: write a function getMessages(text, name)
that takes the text of the chat in a string and returns a
list of all the messages posted by the person with the
given name. You may want to use the code we just
wrote, which we've put in the function getName to the
right.

Try testing your code by running getMessages(text,
"Malika") with text as defined earlier. You should get:

['Could I use recursion for AuthorMap?',

'Why do we count 2 for a merge split?',

'Oh, ok, thank you!']

Hint: what information do you need to check on each
line to see if it should be included?

def getName(line):

start = line.index("From") + len("From")

line = line[start:]

end = line.index(":")

line = line[:end]

if "(Privately)" in line:

end = line.index(" to ")

line = line[:end]

line = line.strip()

return line

30

Update Values with Index Assignment
Once we've parsed our data into an
appropriate format, we may need to
change the structure to achieve the
analysis we want. Let's assume that
we're working with a 2D list produced
from the ice cream data.

To update a value, access the
appropriate column in each row and
change it. For example, you might want
to convert a string to a different type
via type-casting.

Assume data is a 2D list parsed from the file

for row in range(len(data)):

for col in range(len(data[row])):

Make all flavors lowercase

data[row][col] = data[row][col].lower()

print(data)

31

Remove Values with pop()
To remove a value, pop an element of
each row based on the column that
needs to be removed.

Assume data is a 2D list parsed from the file

for row in range(len(data)):

data[row].pop(0) # remove the timestamp

for col in range(len(data[row])):

Make all flavors lowercase

data[row][col] = data[row][col].lower()

print(data)

32

Add Values with append()/insert()
To add a value, append or insert a new
value into each row, potentially based
on the pre-existing values.

Assume data is a 2D list parsed from the file

for row in range(len(data)):

data[row].pop(0) # remove the timestamp

chocCount = 0 # count number of chocolate

for col in range(len(data[row])):

Make all flavors lowercase

data[row][col] = data[row][col].lower()

if "chocolate" in data[row][col]:

chocCount += 1

track chocolate count

data[row].append(chocCount)

print(data)

33

Headers are Special Cases
Make sure to update the header
according to a separate rule!

Assume data is a 2D list parsed from the file

header = data[0]

header.pop(0) # remove the timestamp

header.append("# chocolate")

for row in range(1, len(data)):

data[row].pop(0) # remove the timestamp

chocCount = 0 # count number of chocolate

for col in range(len(data[row])):

Make all flavors lowercase

data[row][col] = data[row][col].lower()

if "chocolate" in data[row][col]:

chocCount += 1

track chocolate count

data[row].append(chocCount)

print(data)

34

Analysis

35

Basic Data Analyses – Statistics Library
There are many basic analyses we can run on features in data to get a sense of what the data
means. You've learned about some of them already in math or statistics classes, such as mean,
median, and mode.

You can implement these in Python yourself, but you don't have to! There's already a statistics
library that does this for you.

import statistics

data = [41, 65, 64, 50, 45, 13, 29, 14, 7, 14]

statistics.mean(data) # 34.2

statistics.median(data) # 35.0

statistics.mode(data) # 14

36

Example: Statistics of Ice Cream
We can start by measuring the
statistics of the ice cream dataset.

The data is text, so we must turn it
into numbers before performing
analyses like mean.

Try counting the number of favorite
flavors that fall into a set of flavor
names for each person, then put
those counts into a list to analyze.

def getFlavorCounts(data, flavorSubset):
counts = []
for row in range(1, len(data)): # skip header

count = 0
skip chocolate count
flavors = data[row][:len(data[row])-1]
for flavor in flavors:

if flavor in flavorSubset:
count += 1

counts.append(count)
return counts

import statistics
statistics.mean(getFlavorCounts(data,

["chocolate", "vanilla", "strawberry"]))

37

Activity: Most Popular Ice Cream
You do: write a bit of code to calculate the most popular ice cream across
all preferences in the icecream.csv dataset.

Hint: with this problem, we don't need to convert the data to numbers!
The easiest way to do this is to make a list of all ice cream preferences,
then use the mode function to find the most common string.

38

Calculating Probabilities
You'll also often want to calculate probabilities
based on your data.

In general, the probability that a certain data
type occurs in a dataset is the count of how
often it occurred, divided by the total number
of data points.

lst.count(item) / len(lst)

Conditional probability (the probability of
something occurring given another factor) is
slightly more complicated.

Create a modified version of the list that
contains only those elements with that factor;
then you can use the same equation.

newLst = []

for x in lst:

if meetsProperty(x):

newLst.append(x)

newLst.count(item) / len(newLst)

39

Example: Probability of Ice Cream
Now let's look at the probabilities of
the dataset.

To get the probability that someone
likes a certain flavor, change the
code slightly to count whether or
not that flavor shows up in each
person's preferences.

Then divide by the total number of
data points at the end.

def getFlavorProb(data, flavor):
flavorCount = 0
for i in range(1, len(data)): # skip header

skip chocolate count
flavors = data[row][:len(data[row])-1]
if flavor in flavors:

flavorCount += 1
return flavorCount / (len(data) - 1) # skip header

print(getFlavorProb(data, "chocolate"))

40

More Analysis Methods
There's plenty of other data analysis methods we could cover – bucketing,
detecting outliers, dealing with missing data – but what kind of method
you need will depend entirely on the context of the problem you're
solving.

Use algorithmic thinking to translate the analysis you want to perform into
a set of steps, then translate those steps into code!

41

Learning Goals
Read and write data from files

Use built-in libraries to interpret protocols in files

Reformat data to find, add, remove, or reinterpret pre-existing data

Perform basic analyses on data, including calculating statistics and
probabilities, to answer simple questions

42

