
Advanced CS #4 –
Efficiency Analysis
CS SCHOLARS – PROGRAMMING



Learning Objectives
Recognize linear search and binary search when reading and writing code to 
search for items in sorted lists

Identify the worst case and best case inputs of functions

Calculate a specific function or algorithm's efficiency using Big-O notation

Recognize the requirements for building a good hash function and a good 
hashtable that lead to constant-time search

2



Efficiency = Time = Money
Why should we care about how fast our code is?

Computers are fast, but they can still take time to do complex actions. 
Faster algorithms can save lives, increase company profits, and reduce user 
frustration.

A major goal of computer scientists is not just to make algorithms that 
work, but algorithms that work efficiently.
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Two Ways to Search
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Searching for Items
Search is one of the most common tasks a computer needs to do.

Suppose we want to determine whether a list contains a specific value. We know that 
the in operator can check this for us, but what algorithm does in implement?

We'll need to think about this from a computer's perspective...

5



How Computers See Lists
If we ask a computer to check if a value is in a list, it sees the whole list as 
a series of not-yet-known values:

In order to determine if the value is one of them, it needs to check each 
item in turn.
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For Loop Search Function
We can use a for loop to implement this approach as code. We call this linear search, because it 
searches all items in a linear order.

def linearSearch(lst, target):
for i in range(len(lst)):

if lst[i] == target:
return True

return False

Note that we can return True as soon as we find the target value, but we can't return False until 
we've examined all the values.

Question: If target appears more than once in lst, which value will cause the function to return?

Answer: The first one!
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Recursive Linear Search Algorithm
What's the base case for linear search?

Answer: an empty list. The item can't possibly be in an empty list, so the result is False.

Also: a list where the first element is what we're searching for, so the result is True.

How do we make the problem smaller?

Answer: call the linear search on all but the first element of the list.

How do we combine the solutions?

Answer: no combination necessary. The recursive call returns whether the item occurs in 
the rest of the list; just return that result unmodified.
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Recursive Linear Search Code
def recursiveLinearSearch(lst, target):

if lst == [ ]:

return False

elif lst[0] == target:

return True

else:

return recursiveLinearSearch(lst[1:], target)

print(recursiveLinearSearch(["dog", "cat", "rabbit", "mouse"], "rabbit"))

print(recursiveLinearSearch(["dog", "cat", "rabbit", "mouse"], "horse"))
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Alternative to Linear Search
Linear Search is a nice, 
straightforward approach to 
searching a set of items. But that 
doesn't mean it's the only way to 
search.

Assume you want to search a 
dictionary to find the definition of a 
word you just read. Would you use 
linear search, or a different 
algorithm?
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Can we take advantage of  
dictionaries being sorted?



Binary Search Divides the List Repeatedly
In Linear Search, we start at the beginning of a list and check each element in 
order. So if we search for 98 and do one comparison...

In Binary Search on a sorted list, we'll start at the middle of the list and 
eliminate half the list based on the comparison we do. When we search for 98 
again...
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2 5 10 20 42 56 67 76 89 95

Start here

2 5 10 20 42 56 67 76 89 95

Start here

2 5 10 20 42 56 67 76 89 95

2 5 10 20 42 56 67 76 89 952 5 10 20 42 56 67 76 89 95

Many more #s have been eliminated!



Algorithm for Binary Search
Algorithm for Binary Search:

1. Find the middle element of the list.

2. Compare the middle element to the target.
a) If they're equal – you're done!

b) If the item is smaller – recursively search to the left of the middle.

c) If the item is bigger – recursively search to the right of the middle.
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Example 1: Search for 73
0   1   2   3   4   5   6   7   8   9  10  11  12  13  14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Found:  return True 



Example 2: Search for 42
0   1   2   3   4   5   6   7   8   9  10  11  12  13  14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Not found:  return False



Activity: Trace Binary Search
You do: determine the correct trace for the following call to binary search. Which 
numbers are visited?

Note that when there are an even number of elements, we'll break ties to the right.

binarySearch([2, 7, 11, 18, 19, 32, 45, 63, 84, 95, 97], 95)
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Activity Answer
32, 84, 97, 95
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Base Case and Recursive Case of Binary Search
What are the base cases for binary search?

Answer: an empty list. The target can't possibly be in an empty list, so the result 
is False.

Also: a list where the target is the middle element. Then we can stop searching 
and immediately return True.

How do we make the problem smaller?

Answer: get rid of the half of the list we know the target isn't in (which half?).

How do we combine the solutions?

Answer: no need to combine anything. Simply return the result of the recursive 
function call.
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Binary Search in Code
Now we just need to translate the algorithm to Python.

def binarySearch(lst, target):

if ____ # base case

return _____

else:

# Find the middle element of the list.

# Compare middle element to the target.

# If they're equal – you're done!

# If the item is smaller, recursively search 

#    to the left of the middle.

# If the item is bigger, recursively search 

#    to the right of the middle.

18



Binary Search in Code – Base Case
The first base case is the empty list, and return False

def binarySearch(lst, target):

if lst == [ ]:

return False

else:

# Find the middle element of the list.

# Compare middle element to the target.

# If they're equal – you're done!

# If the item is smaller, recursively search 

#    to the left of the middle.

# If the item is bigger, recursively search 

#    to the right of the middle.
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Binary Search – Middle Element
To get the middle element, use indexing with half the length of the list.

def binarySearch(lst, target):

if lst == [ ]:

return False

else:

midIndex = len(lst) // 2

# Compare middle element to the target.

# If they're equal – you're done!

# If the item is smaller, recursively search 

#    to the left of the middle.

# If the item is bigger, recursively search 

#    to the right of the middle.
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Use integer division in case 
the list has an odd length



Binary Search – Base Case
The second base case occurs when we find the target. Return True.

def binarySearch(lst, target):

if lst == [ ]:

return False

else:

midIndex = len(lst) // 2

if lst[midIndex] == target:

return True

# If the item is smaller, recursively search 

#    to the left of the middle.

# If the item is bigger, recursively search 

#    to the right of the middle.
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Binary Search – Comparison
Use an if/elif/else statement to decide which side to use for the smaller problem.

def binarySearch(lst, target):

if lst == [ ]:

return False

else:

midIndex = len(lst) // 2

if lst[midIndex] == target:

return True

elif target < lst[midIndex]:

________ # recursively search to the left of the middle

else: # lst[midIndex] < target

________ # recursively search to the right of the middle
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Binary Search – Recursive Calls
Use slicing to make the recursive call and return the result immediately.

def binarySearch(lst, target):

if lst == [ ]:

return False

else:

midIndex = len(lst) // 2

if lst[midIndex] == target:

return True

elif target < lst[midIndex]:

return binarySearch(lst[:midIndex], target)

else: # lst[midIndex] < target

return binarySearch(lst[midIndex+1:], target)
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Linear Search vs. Binary Search
Why should we go through the effort of writing this more-complicated 
search method?

Answer: efficiency. Binary search is vastly more efficient than linear 
search, as it performs a lot fewer comparisons to find the same item.

24



Comparing Linear vs. Binary Search
How can we compare these two algorithms at an abstract level?

We could run both on the same input and time them. However, how 
quickly a program runs varies based on lots of factors (the implementation, 
the machine, which other programs are running, etc.)

Instead, we'll choose some meaningful action that occurs in the program 
and count the number of actions the program takes on a given input.

25



Counting the number of actions
What actions might we count? Some lines of code may compose multiple 
operations into one line, and some actions may take longer than others to 
execute on the computer's hardware.

Instead of trying to count every action the computer takes, we choose some 
specific action and count how many times the algorithm runs that action based 
on the size of the input.

For example, in linear or binary search we can count the total number of 
comparisons that the algorithms make to find an item based on the number of 
items in the list.
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1st 4th 3rd 2nd

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Linear vs. Binary Search: Search for 66
def linSearch(lst, target):

if len(lst) == 0:

return False

elif lst[0] == target:

return True

else:

return linSearch(lst[1:], target)

How many list elements are compared to 66?  
linear search: 9 times
binary search: 4 times

def biSearch(lst, target):

if lst == [ ]:

return False

else:

mid = len(lst) // 2

if lst[mid] == target:

return True

elif target < lst[mid]:

return biSearch(lst[:mid], target)

else:

return biSearch(lst[mid+1:], target)
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12 25 32 37 41 48 58 60 66 73 74 79 83 91 95



Best Case, Worst Case
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Best Case and Worst Case
To truly compare the algorithms, it isn't enough to test them on a random 
example. We want to know how they'll do in the best case and in the 
worst case. Those cases are defined based on the inputs to the function.

Best case: an input of size n that results in the algorithm taking the least 
steps possible.

Worst case: an input of size n that results in the algorithm taking the most 
steps possible.
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Best Case and Worst Case – Linear Search
What's the best case for linear search?

Answer: a list where the item we search for is in the first position

What's the worst case for linear search?

Answer: a list where the item we search for is not in the list.
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Best Case and Worst Case – Binary Search
You do: what's the best case input and worst case input for binary search 
if we're counting comparisons?
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Best Case and Worst Case – Binary Search
What's the best case for binary search?

Answer: a list where the item we search for is right in the middle

What's the worst case for binary search?

Answer: a list where the item we search for is not in the list.
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Best Case/Worst Case Actions
How many actions do we perform in the best case?

For both linear search and binary search, there's just one comparison –
a list of any length in which it finds the item with the first comparison.

How many actions in the worst case?

In linear search, we have to check every single element. If the list has n
elements, we do n comparisons.

What about binary search?
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Worst Case Action Count – Binary Search
Each call to binary search compares one item of the list. How many recursive calls (and 
therefore comparisons) do we make to binary search for different length lists?
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List size Number of recursive calls

1 1

22-1 = 3 2

23-1 = 7 3

24-1 = 15 4

25-1 = 31 5

2k - 1 k

n log2(n)

When the input length 
doubles, linear search 
does twice as many 
comparisons.

But, when the input length 
doubles, binary search 
does just one more 
comparison!



Sidebar: Calculating Efficiency
Our implementation of binary search only looks better than our 
implementation of linear search because we only count comparisons.

Slicing a list also takes additional work, as the computer needs to create a 
copy of the list. Our recursive implementations of linear and binary search 
both slice the list on every call.

This is inefficient – we're doing more work than we need to! A better 
approach would be to pass the reference of the original list and change the 
indexes checked instead of changing the list itself.

35



Function Families
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Function Families
When we count the actions taken by algorithms, we don't really care about one-
off operations; we care about actions that are related to the size of the input.

In math, a function family is a set of equations that all grow at the same rate as 
their inputs grow. For example, an equation might grow linearly or quadratically.

When determining which equation family represents the actions taken by an 
algorithm, we say that n is the size of the input. For a list, that's the number of 
elements; for a string, the number of characters.
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Common Function Families
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n (amount of data)

Number of

Operations

Exponential

Constant

Logarithmic

Quadratic

Linear



Function Families and Constants
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Notice that as n grows, the 
two linear functions 
become larger than the 
logarithmic function and 
the linear * logarithmic 
function becomes larger 
than both linear functions, 
regardless of the constants.

logarithmic



Function Family Comparisons
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Even for small n, 
exponential functions 
quickly skyrocket and 
quadratic functions 
grow rapidly compared 
to linear functions.



Alternate Visualization
Here's another way to think about the function families. Consider what happens when 
you double the size of the input.
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Constant double input, no 
change in actions

Input Size Actions Taken

Logarithmic double input,
+1 action

Linear double input,
double actions

Quadratic double input, 
quadruple actions

Exponential double input, many 
many more actions!



Big-O

42



Big-O Notation
When we determine a program or algorithm's runtime, we ignore constant 
factors and smaller terms. All that matters is the dominant term (the 
highest power of n), the function family. That is the idea of Big-O notation.
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f(n) Big-O

n O(n)

32n + 23 O(n)

5n2 + 6n - 8 O(n2)

18 log(n) O(log n)

Unless specified otherwise, the 
Big-O of an algorithm refers to its 
worst case run time (computer 
scientists are pessimists).

Caveat: this is a simplified definition. If you take other CS 
classes, you'll learn more about how Big-O actually works.



Big-O of Linear Search / Binary Search
Because runtime for linear search is proportional to the length of the list in 
the worst case, it is O(n). Every time we double the length of the list, 
binary search does just one more comparison in the worst case; it is O(log 
n).
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Except for very small n, 
binary search is blazingly 
faster. Linear search is 
exponentially slower in 
the worst case!



Big-O Calculation Strategy
We'll often need to calculate the Big-O of an algorithm or a piece of code 
to determine how efficient it is and whether we can make it better.

We can determine an algorithm's Big-O by determining how many actions 
are added if we increase the size of the input. We can often do a rough 
estimate of actions by just counting the number of statements that will 
run.

Let's go through a bunch of examples to demonstrate.
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O(1) is Constant Time
def swap(lst, i, j):

tmp = lst[i]

lst[i] = lst[j]

lst[j] = tmp

46

Does the runtime of this 
algorithm depend on the 
number of items in the list?

Answer: No.

We say that an algorithm is 
constant time or O(1) when its 
time does not change with the 
size of the input.



O(log n) is Logarithmic Time
def countDigits(n):

count = 0

while n > 0:

n = n // 10

count = count + 1

return count
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Every time you increase n by a factor of 10, 
you do the loop one more time. All the 
operations in the loop are constant time. 
Analogous to binary search, the algorithm is 
logarithmic time, or O(log n).

Why? O(log 2n) = O(log n) + 1  - you add one 
action per doubling of the input.

Even though this is log10(n), we don't include 
the base in the Big-O notation because a 
change of base is just a multiplicative factor.



O(n) is Linear Time
def countdown(n):

for i in range(n, -1, -5):

print(i)
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If we double the size of n, how many 
more times do we go through the 
loop?

Answer: We double the number of 
times through the loop. That is linear
time, or O(n), as it is proportional to 
the size of n. Stepping by 5 doesn't 
change the function family.

Note that O(2n) = O(n) + O(n)



O(n2) is Quadratic Time
def multiplicationTable(n):

for i in range(1, n+1):

for j in range(1, n+1):

print(i, "*", j, "=", i*j)

If we double the size of n, we execute the outer loop twice as many times. And for each time we 
execute the outer loop, we execute the inner loop twice as many times. Generating the table 
takes 4 times as long. This is  quadratic time, or O(n2).

Every time you add a new element, 1 action is added to each iteration of the inner loop and 1 
iteration is added to the outer loop (n+1 actions). That's 2n+1 new actions added. O((n+1)2) = 
O(n2) + 2n + 1.
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O(2n) is Exponential Time
def move(start, tmp, end, num):

if num == 1:

return 1

else:

moves = 0

moves = moves + move(start, end, tmp, num - 1)

moves = moves + move(start, tmp, end, 1)

moves = moves + move(tmp, start, end, num - 1)

return moves
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This is Towers of Hanoi. Every 
time we add 1 disc we double the 
number of moves. That's 
exponential time, or O(2n).

O(2n+1) = O(2n) + O(2n)



For Recursion, Look at the Number of Calls
Is all recursion exponential? Not necessarily! It depends on the number of recursive calls the function will 
need to make.

def countdown(n):

if n <= 0:

print("Finished!")

else:

print(n)

countdown(n - 5)

Consider the example above. If you call the function on 100, it will make the next call on 95, then 90, etc; 20 
total calls will be made. If you double the input, 40 calls will be made. The function is O(n).
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Be Careful of Built-in Runtimes!
def countAll(lst):

for i in range(len(lst)):

count = lst.count(i)

print(i, "occurs", count, "times")

This is actually O(n2), because each call to lst.count(i) takes O(n) time.
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Activity: Calculate the Big-O of Code
Activity: predict the Big-O runtime of the following piece of code. 

def sumEvens(lst): # n = len(lst)

result = 0

for i in range(len(lst)):

if lst[i] % 2 == 0:

result = result + lst[i]

return result
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Activity Answer
O(n)
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Optimizing Search 
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Increase Efficiency by Cutting Extra Work
We've talked about how to determine 
the efficiency of an algorithm, but we 
haven't addressed a more important 
question. How can we design
algorithms to make them more 
efficient?

Sometimes making a program more 
efficient is easy; you just need to look 
for unnecessary actions (statements 
that aren't used, loops that repeat work 
already done) and cut them.

def findLargest(lst):
largest = lst[0]
for i in range(len(lst)):

for j in range(len(lst)):
if lst[i] > largest and \

lst[i] > lst[j]:
largest = lst[i]

return largest

# could be

def findLargest(lst):
largest = lst[0]
for i in range(1, len(lst)):

if lst[i] > largest:
largest = lst[i]

return largest
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Increase Efficiency by Thinking Differently
More often we increase the efficiency of an algorithm by thinking about 
the problem in a different way.

The obvious solution to a problem isn't always the most efficient. We can 
often make a faster solution by using a different data structure or an 
entirely different algorithmic approach.
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Improving Search
We've discussed linear search (which runs in O(n)), and binary search 
(which runs in O(log n)).

We use search all the time, so we want to search as quickly as possible. 
Can we search for an item in O(1) time?

We can't always search for things in constant time, but there are certain 
circumstances where we can.
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Search in Real Life – Post Boxes
Consider how you receive mail at college. Your mail 
is sent to the post box in a central location. Do you 
have to check every box to find your mail?

No- just check the one assigned to you.

This is possible because your mail has an address on 
the front that includes your mailbox number. Your 
mail will only be put into a box that has the same 
number as that address, not other random boxes.

Picking up your mail is a O(1) operation!

59



Search in Programming – List Indexes
We can't search a list for an item in 
constant time, but we can look up an item 
based on an index in constant time.

Reminder: Python stores lists in memory as 
a series of adjacent parts. Each part holds 
a single value in the list, and all these parts 
use the same amount of space.

Example:

lst = ["a", "abc", True]
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lst

"a" "abc" True



Search in Programming – List Indexes
We can calculate the exact starting location of a list index's 
memory address based on the first address where lst is 
stored. If the size of a part is N, we can find an index's address 
with the formula:

start + N * index

Example: in the list to the right, each part is 8 bytes in size 
and the memory values start at 0800. To access lst[2], 
compute:

0800 + 8 * 2 = 0816

Given a memory address, we can get the value from that 
address in constant time. Looking up an index in a list is O(1)!
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8 bytes 8 bytes 8 bytes

lst

"A" "B" "C" "D" "E"

0800 8 bytes 8 bytes



Combine the Concepts
To implement constant-time search, we want to combine the ideas of post 
boxes and list index lookup. Specifically, we want to determine which index 
a value is stored in based on the value itself.

If we can calculate the index based on the value, we can retrieve the value 
in constant time.
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Hash Functions Map Values to Integers
In order to determine which list index should be used based on the value 
itself we'll need to map values to indexes (integers).

We call a function that maps values to integers a hash function. This 
function must follow two rules:

◦ Given a specific value x, hash(x) must always return the same output i

◦ Given two different values x and y, hash(x) and hash(y) should usually
return two different outputs, i and j
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Built-in Hash Function
We don't need to write our own hash function most of the time- Python 
already has one!

x = "abc"

hash(x) # some giant number

hash() works on integers, floats, Booleans, strings, and some other types 
as well.
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Hashtables Organize Values
Now that we have a hash function, we can use 
it to organize values in a special data structure.

A hashtable is a list with a fixed number of 
indexes. When we place a value in the list, we 
put it into an index based on its hash value
instead of placing it at the end of the list.

We often call these indexes 'buckets'. For 
example, the hashtable to the right has four 
buckets. Important: actual hashtables have far 
more buckets than this.

65

index 0 index 1 index 2 index 3



Adding Values to a Hashtable
For simplicity, let's say this hashtable uses a hash 
function that maps strings to indexes using the first 
letter of the string, as shown to the right. (This is not 
a good hash function, but it will serve as an 
example).

First, add "book" to the table. hash("book") is 1, 
so we'll put the value in bucket 1.

Next, add "yay". hash("yay") is 24, which is 
outside the range of our table. How do we assign it?

Use value % tableSize to map integers larger 
than the size of the table to an index. 24 % 4 = 0, 
so we put "yay" in bucket 0.
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def hash(s):
# number of letters between
# first letter and 'a'
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"book""yay" "book"



Dealing with Collisions
When you add lots of values to a hashtable, 
two elements may collide. This happens if they 
are assigned to the same index. For example, if 
we try to add both "cmu" and "college" to 
our table, they will collide.

Hashtables are designed to handle collisions. 
One algorithm for handling collisions is to put 
the collided values in a list and put that list in 
the bucket. If your table size is reasonably big 
and the indexes returned by the hash function 
are reasonably spread out, each bucket will 
normally hold a constant number of values.

Our example hash function is not good because 
it only looks at the first letter. A function that 
uses all the letters would be better.
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def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "college""yay" "book" "cmu"
"college"



You Do: Search a Hashtable
Let's say that we want to 
algorithmically check whether the 
string "friday" is in our hashtable.

You do: Which buckets does the 
algorithm need to check?
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def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "college""yay" "book" "cmu"
"college"



Activity Answer
You only have to check one index – index 1.
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Searching a Hashtable is O(1)!
To search for a value, call the hash function on 
it and mod the result by the table size. The 
index produced is the only index you need to 
check!

For example, we can check if "book" is in the 
table just by checking bucket 1.

If the value is in the table, it will be at that 
index. If it isn't, it won't be anywhere else 
either. To check for "stella" just look in in 
bucket 2.

Because we only need to check one index and 
each index holds a constant number of items, 
finding a value is O(1).
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def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"college"



Caveat: Don't Hash Mutable Values!
What happens if you try to put a list in a 
hashtable? Let's set lst = ["a", "z"] and 
use the given hash to add lst.

This might seem fine at first, but it will become 
a problem if you change the list before 
searching. Let's say we set lst[0] = "d".

When we hash the list again, the hashed value 
is 3, not 0. But the list isn't stored in bucket 3! 
We can't find it reliably.

For this reason, we don't put mutable values 
into hashtables. If you try to run the built-in 
hash on a list, it will crash.
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def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"college"

"yay"
["a", "z"]

"book" "cmu"
"college"

"yay"
["d", "z"]

"book" "cmu"
"college"

"yay"
["a", "z"]

"book" "cmu"
"college"



Dictionaries Use Hashed Search
Because hashed search requires immutable search values and a hashtable, 
it isn't used in lists or strings. However, it is used to implement dictionary 
search.

Recall that the keys of a dictionary must be immutable. This is because 
those keys are all stored in a hashtable. Each key points to its own value; 
that's how values can still be accessed.

This means that searching for a key in a dictionary takes O(1) time! 
Dictionaries are super efficient for basic lookup tasks.
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Searching Dictionaries vs. Lists
Recall the built-in operator in, which checks for membership in a data structure.

item in lst runs in linear time if lst is a list, because Python can't guarantee 
that the list is sorted. It uses linear search.

item in dict runs in constant time if dict is a dictionary due to hashing.

If you know that you'll need to do a lot of searching for specific values, it's better 
to store your data in a dictionary than a list, even if its a sorted list.
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Coding Efficiently With Dictionaries
Here's an example of how to increase a 
function's efficiency with dictionary search. Say 
you want to check whether there are any 
duplicates in a dataset. This is commonly 
needed in data analysis to make sure 
datapoints aren't double-counted.

If we try to check every element in a list using 
in, it will take O(n2) time (n-1 actions * n items 
checked).

If we instead move the items to a dictionary, it 
takes O(n) time (constant actions * n items 
checked).

def hasDuplicates(studentIDs):

for i in range(len(studentIDs)):

others = studentIDs[:i] + studentIDs[i+1:]

if studentIDs[i] in others:

return True

return False

# vs

def hasDuplicates(studentIDs):

studentDict = { }

for student in studentIDs:

if student in studentDict:

return True

else:

studentDict[student] = 1

return False
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Learning Objectives
Recognize linear search and binary search when reading and writing code to 
search for items in sorted lists

Identify the worst case and best case inputs of functions

Calculate a specific function or algorithm's efficiency using Big-O notation

Recognize the requirements for building a good hash function and a good 
hashtable that lead to constant-time search
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