
Advanced CS #4 –
Efficiency Analysis
CS SCHOLARS – PROGRAMMING

Learning Objectives
Recognize linear search and binary search when reading and writing code to
search for items in sorted lists

Identify the worst case and best case inputs of functions

Calculate a specific function or algorithm's efficiency using Big-O notation

Recognize the requirements for building a good hash function and a good
hashtable that lead to constant-time search

2

Efficiency = Time = Money
Why should we care about how fast our code is?

Computers are fast, but they can still take time to do complex actions.
Faster algorithms can save lives, increase company profits, and reduce user
frustration.

A major goal of computer scientists is not just to make algorithms that
work, but algorithms that work efficiently.

3

Two Ways to Search

4

Searching for Items
Search is one of the most common tasks a computer needs to do.

Suppose we want to determine whether a list contains a specific value. We know that
the in operator can check this for us, but what algorithm does in implement?

We'll need to think about this from a computer's perspective...

5

How Computers See Lists
If we ask a computer to check if a value is in a list, it sees the whole list as
a series of not-yet-known values:

In order to determine if the value is one of them, it needs to check each
item in turn.

6

S T E L L A

"S" "T" "E" "L" "L" "A"

For Loop Search Function
We can use a for loop to implement this approach as code. We call this linear search, because it
searches all items in a linear order.

def linearSearch(lst, target):
for i in range(len(lst)):

if lst[i] == target:
return True

return False

Note that we can return True as soon as we find the target value, but we can't return False until
we've examined all the values.

Question: If target appears more than once in lst, which value will cause the function to return?

Answer: The first one!

7

Recursive Linear Search Algorithm
What's the base case for linear search?

Answer: an empty list. The item can't possibly be in an empty list, so the result is False.

Also: a list where the first element is what we're searching for, so the result is True.

How do we make the problem smaller?

Answer: call the linear search on all but the first element of the list.

How do we combine the solutions?

Answer: no combination necessary. The recursive call returns whether the item occurs in
the rest of the list; just return that result unmodified.

8

Recursive Linear Search Code
def recursiveLinearSearch(lst, target):

if lst == []:

return False

elif lst[0] == target:

return True

else:

return recursiveLinearSearch(lst[1:], target)

print(recursiveLinearSearch(["dog", "cat", "rabbit", "mouse"], "rabbit"))

print(recursiveLinearSearch(["dog", "cat", "rabbit", "mouse"], "horse"))

9

Alternative to Linear Search
Linear Search is a nice,
straightforward approach to
searching a set of items. But that
doesn't mean it's the only way to
search.

Assume you want to search a
dictionary to find the definition of a
word you just read. Would you use
linear search, or a different
algorithm?

10

Can we take advantage of
dictionaries being sorted?

Binary Search Divides the List Repeatedly
In Linear Search, we start at the beginning of a list and check each element in
order. So if we search for 98 and do one comparison...

In Binary Search on a sorted list, we'll start at the middle of the list and
eliminate half the list based on the comparison we do. When we search for 98
again...

11

2 5 10 20 42 56 67 76 89 95

Start here

2 5 10 20 42 56 67 76 89 95

Start here

2 5 10 20 42 56 67 76 89 95

2 5 10 20 42 56 67 76 89 952 5 10 20 42 56 67 76 89 95

Many more #s have been eliminated!

Algorithm for Binary Search
Algorithm for Binary Search:

1. Find the middle element of the list.

2. Compare the middle element to the target.
a) If they're equal – you're done!

b) If the item is smaller – recursively search to the left of the middle.

c) If the item is bigger – recursively search to the right of the middle.

12

Example 1: Search for 73
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Found: return True

Example 2: Search for 42
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Not found: return False

Activity: Trace Binary Search
You do: determine the correct trace for the following call to binary search. Which
numbers are visited?

Note that when there are an even number of elements, we'll break ties to the right.

binarySearch([2, 7, 11, 18, 19, 32, 45, 63, 84, 95, 97], 95)

15

Activity Answer
32, 84, 97, 95

16

Base Case and Recursive Case of Binary Search
What are the base cases for binary search?

Answer: an empty list. The target can't possibly be in an empty list, so the result
is False.

Also: a list where the target is the middle element. Then we can stop searching
and immediately return True.

How do we make the problem smaller?

Answer: get rid of the half of the list we know the target isn't in (which half?).

How do we combine the solutions?

Answer: no need to combine anything. Simply return the result of the recursive
function call.

17

Binary Search in Code
Now we just need to translate the algorithm to Python.

def binarySearch(lst, target):

if ____ # base case

return _____

else:

Find the middle element of the list.

Compare middle element to the target.

If they're equal – you're done!

If the item is smaller, recursively search

to the left of the middle.

If the item is bigger, recursively search

to the right of the middle.

18

Binary Search in Code – Base Case
The first base case is the empty list, and return False

def binarySearch(lst, target):

if lst == []:

return False

else:

Find the middle element of the list.

Compare middle element to the target.

If they're equal – you're done!

If the item is smaller, recursively search

to the left of the middle.

If the item is bigger, recursively search

to the right of the middle.

19

Binary Search – Middle Element
To get the middle element, use indexing with half the length of the list.

def binarySearch(lst, target):

if lst == []:

return False

else:

midIndex = len(lst) // 2

Compare middle element to the target.

If they're equal – you're done!

If the item is smaller, recursively search

to the left of the middle.

If the item is bigger, recursively search

to the right of the middle.

20

Use integer division in case
the list has an odd length

Binary Search – Base Case
The second base case occurs when we find the target. Return True.

def binarySearch(lst, target):

if lst == []:

return False

else:

midIndex = len(lst) // 2

if lst[midIndex] == target:

return True

If the item is smaller, recursively search

to the left of the middle.

If the item is bigger, recursively search

to the right of the middle.

21

Binary Search – Comparison
Use an if/elif/else statement to decide which side to use for the smaller problem.

def binarySearch(lst, target):

if lst == []:

return False

else:

midIndex = len(lst) // 2

if lst[midIndex] == target:

return True

elif target < lst[midIndex]:

________ # recursively search to the left of the middle

else: # lst[midIndex] < target

________ # recursively search to the right of the middle

22

Binary Search – Recursive Calls
Use slicing to make the recursive call and return the result immediately.

def binarySearch(lst, target):

if lst == []:

return False

else:

midIndex = len(lst) // 2

if lst[midIndex] == target:

return True

elif target < lst[midIndex]:

return binarySearch(lst[:midIndex], target)

else: # lst[midIndex] < target

return binarySearch(lst[midIndex+1:], target)

23

Linear Search vs. Binary Search
Why should we go through the effort of writing this more-complicated
search method?

Answer: efficiency. Binary search is vastly more efficient than linear
search, as it performs a lot fewer comparisons to find the same item.

24

Comparing Linear vs. Binary Search
How can we compare these two algorithms at an abstract level?

We could run both on the same input and time them. However, how
quickly a program runs varies based on lots of factors (the implementation,
the machine, which other programs are running, etc.)

Instead, we'll choose some meaningful action that occurs in the program
and count the number of actions the program takes on a given input.

25

Counting the number of actions
What actions might we count? Some lines of code may compose multiple
operations into one line, and some actions may take longer than others to
execute on the computer's hardware.

Instead of trying to count every action the computer takes, we choose some
specific action and count how many times the algorithm runs that action based
on the size of the input.

For example, in linear or binary search we can count the total number of
comparisons that the algorithms make to find an item based on the number of
items in the list.

26

1st 4th 3rd 2nd

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Linear vs. Binary Search: Search for 66
def linSearch(lst, target):

if len(lst) == 0:

return False

elif lst[0] == target:

return True

else:

return linSearch(lst[1:], target)

How many list elements are compared to 66?
linear search: 9 times
binary search: 4 times

def biSearch(lst, target):

if lst == []:

return False

else:

mid = len(lst) // 2

if lst[mid] == target:

return True

elif target < lst[mid]:

return biSearch(lst[:mid], target)

else:

return biSearch(lst[mid+1:], target)

27

12 25 32 37 41 48 58 60 66 73 74 79 83 91 95

Best Case, Worst Case

28

Best Case and Worst Case
To truly compare the algorithms, it isn't enough to test them on a random
example. We want to know how they'll do in the best case and in the
worst case. Those cases are defined based on the inputs to the function.

Best case: an input of size n that results in the algorithm taking the least
steps possible.

Worst case: an input of size n that results in the algorithm taking the most
steps possible.

29

Best Case and Worst Case – Linear Search
What's the best case for linear search?

Answer: a list where the item we search for is in the first position

What's the worst case for linear search?

Answer: a list where the item we search for is not in the list.

30

Best Case and Worst Case – Binary Search
You do: what's the best case input and worst case input for binary search
if we're counting comparisons?

31

Best Case and Worst Case – Binary Search
What's the best case for binary search?

Answer: a list where the item we search for is right in the middle

What's the worst case for binary search?

Answer: a list where the item we search for is not in the list.

32

Best Case/Worst Case Actions
How many actions do we perform in the best case?

For both linear search and binary search, there's just one comparison –
a list of any length in which it finds the item with the first comparison.

How many actions in the worst case?

In linear search, we have to check every single element. If the list has n
elements, we do n comparisons.

What about binary search?

33

Worst Case Action Count – Binary Search
Each call to binary search compares one item of the list. How many recursive calls (and
therefore comparisons) do we make to binary search for different length lists?

34

List size Number of recursive calls

1 1

22-1 = 3 2

23-1 = 7 3

24-1 = 15 4

25-1 = 31 5

2k - 1 k

n log2(n)

When the input length
doubles, linear search
does twice as many
comparisons.

But, when the input length
doubles, binary search
does just one more
comparison!

Sidebar: Calculating Efficiency
Our implementation of binary search only looks better than our
implementation of linear search because we only count comparisons.

Slicing a list also takes additional work, as the computer needs to create a
copy of the list. Our recursive implementations of linear and binary search
both slice the list on every call.

This is inefficient – we're doing more work than we need to! A better
approach would be to pass the reference of the original list and change the
indexes checked instead of changing the list itself.

35

Function Families

36

Function Families
When we count the actions taken by algorithms, we don't really care about one-
off operations; we care about actions that are related to the size of the input.

In math, a function family is a set of equations that all grow at the same rate as
their inputs grow. For example, an equation might grow linearly or quadratically.

When determining which equation family represents the actions taken by an
algorithm, we say that n is the size of the input. For a list, that's the number of
elements; for a string, the number of characters.

37

Common Function Families

38

n (amount of data)

Number of

Operations

Exponential

Constant

Logarithmic

Quadratic

Linear

Function Families and Constants

39

Notice that as n grows, the
two linear functions
become larger than the
logarithmic function and
the linear * logarithmic
function becomes larger
than both linear functions,
regardless of the constants.

logarithmic

Function Family Comparisons

40

Even for small n,
exponential functions
quickly skyrocket and
quadratic functions
grow rapidly compared
to linear functions.

Alternate Visualization
Here's another way to think about the function families. Consider what happens when
you double the size of the input.

41

Constant double input, no
change in actions

Input Size Actions Taken

Logarithmic double input,
+1 action

Linear double input,
double actions

Quadratic double input,
quadruple actions

Exponential double input, many
many more actions!

Big-O

42

Big-O Notation
When we determine a program or algorithm's runtime, we ignore constant
factors and smaller terms. All that matters is the dominant term (the
highest power of n), the function family. That is the idea of Big-O notation.

43

f(n) Big-O

n O(n)

32n + 23 O(n)

5n2 + 6n - 8 O(n2)

18 log(n) O(log n)

Unless specified otherwise, the
Big-O of an algorithm refers to its
worst case run time (computer
scientists are pessimists).

Caveat: this is a simplified definition. If you take other CS
classes, you'll learn more about how Big-O actually works.

Big-O of Linear Search / Binary Search
Because runtime for linear search is proportional to the length of the list in
the worst case, it is O(n). Every time we double the length of the list,
binary search does just one more comparison in the worst case; it is O(log
n).

44

Except for very small n,
binary search is blazingly
faster. Linear search is
exponentially slower in
the worst case!

Big-O Calculation Strategy
We'll often need to calculate the Big-O of an algorithm or a piece of code
to determine how efficient it is and whether we can make it better.

We can determine an algorithm's Big-O by determining how many actions
are added if we increase the size of the input. We can often do a rough
estimate of actions by just counting the number of statements that will
run.

Let's go through a bunch of examples to demonstrate.

45

O(1) is Constant Time
def swap(lst, i, j):

tmp = lst[i]

lst[i] = lst[j]

lst[j] = tmp

46

Does the runtime of this
algorithm depend on the
number of items in the list?

Answer: No.

We say that an algorithm is
constant time or O(1) when its
time does not change with the
size of the input.

O(log n) is Logarithmic Time
def countDigits(n):

count = 0

while n > 0:

n = n // 10

count = count + 1

return count

47

Every time you increase n by a factor of 10,
you do the loop one more time. All the
operations in the loop are constant time.
Analogous to binary search, the algorithm is
logarithmic time, or O(log n).

Why? O(log 2n) = O(log n) + 1 - you add one
action per doubling of the input.

Even though this is log10(n), we don't include
the base in the Big-O notation because a
change of base is just a multiplicative factor.

O(n) is Linear Time
def countdown(n):

for i in range(n, -1, -5):

print(i)

48

If we double the size of n, how many
more times do we go through the
loop?

Answer: We double the number of
times through the loop. That is linear
time, or O(n), as it is proportional to
the size of n. Stepping by 5 doesn't
change the function family.

Note that O(2n) = O(n) + O(n)

O(n2) is Quadratic Time
def multiplicationTable(n):

for i in range(1, n+1):

for j in range(1, n+1):

print(i, "*", j, "=", i*j)

If we double the size of n, we execute the outer loop twice as many times. And for each time we
execute the outer loop, we execute the inner loop twice as many times. Generating the table
takes 4 times as long. This is quadratic time, or O(n2).

Every time you add a new element, 1 action is added to each iteration of the inner loop and 1
iteration is added to the outer loop (n+1 actions). That's 2n+1 new actions added. O((n+1)2) =
O(n2) + 2n + 1.

49

O(2n) is Exponential Time
def move(start, tmp, end, num):

if num == 1:

return 1

else:

moves = 0

moves = moves + move(start, end, tmp, num - 1)

moves = moves + move(start, tmp, end, 1)

moves = moves + move(tmp, start, end, num - 1)

return moves

50

This is Towers of Hanoi. Every
time we add 1 disc we double the
number of moves. That's
exponential time, or O(2n).

O(2n+1) = O(2n) + O(2n)

For Recursion, Look at the Number of Calls
Is all recursion exponential? Not necessarily! It depends on the number of recursive calls the function will
need to make.

def countdown(n):

if n <= 0:

print("Finished!")

else:

print(n)

countdown(n - 5)

Consider the example above. If you call the function on 100, it will make the next call on 95, then 90, etc; 20
total calls will be made. If you double the input, 40 calls will be made. The function is O(n).

51

Be Careful of Built-in Runtimes!
def countAll(lst):

for i in range(len(lst)):

count = lst.count(i)

print(i, "occurs", count, "times")

This is actually O(n2), because each call to lst.count(i) takes O(n) time.

52

Activity: Calculate the Big-O of Code
Activity: predict the Big-O runtime of the following piece of code.

def sumEvens(lst): # n = len(lst)

result = 0

for i in range(len(lst)):

if lst[i] % 2 == 0:

result = result + lst[i]

return result

53

Activity Answer
O(n)

54

Optimizing Search

55

Increase Efficiency by Cutting Extra Work
We've talked about how to determine
the efficiency of an algorithm, but we
haven't addressed a more important
question. How can we design
algorithms to make them more
efficient?

Sometimes making a program more
efficient is easy; you just need to look
for unnecessary actions (statements
that aren't used, loops that repeat work
already done) and cut them.

def findLargest(lst):
largest = lst[0]
for i in range(len(lst)):

for j in range(len(lst)):
if lst[i] > largest and \

lst[i] > lst[j]:
largest = lst[i]

return largest

could be

def findLargest(lst):
largest = lst[0]
for i in range(1, len(lst)):

if lst[i] > largest:
largest = lst[i]

return largest

56

Increase Efficiency by Thinking Differently
More often we increase the efficiency of an algorithm by thinking about
the problem in a different way.

The obvious solution to a problem isn't always the most efficient. We can
often make a faster solution by using a different data structure or an
entirely different algorithmic approach.

57

Improving Search
We've discussed linear search (which runs in O(n)), and binary search
(which runs in O(log n)).

We use search all the time, so we want to search as quickly as possible.
Can we search for an item in O(1) time?

We can't always search for things in constant time, but there are certain
circumstances where we can.

58

Search in Real Life – Post Boxes
Consider how you receive mail at college. Your mail
is sent to the post box in a central location. Do you
have to check every box to find your mail?

No- just check the one assigned to you.

This is possible because your mail has an address on
the front that includes your mailbox number. Your
mail will only be put into a box that has the same
number as that address, not other random boxes.

Picking up your mail is a O(1) operation!

59

Search in Programming – List Indexes
We can't search a list for an item in
constant time, but we can look up an item
based on an index in constant time.

Reminder: Python stores lists in memory as
a series of adjacent parts. Each part holds
a single value in the list, and all these parts
use the same amount of space.

Example:

lst = ["a", "abc", True]

60

lst

"a" "abc" True

Search in Programming – List Indexes
We can calculate the exact starting location of a list index's
memory address based on the first address where lst is
stored. If the size of a part is N, we can find an index's address
with the formula:

start + N * index

Example: in the list to the right, each part is 8 bytes in size
and the memory values start at 0800. To access lst[2],
compute:

0800 + 8 * 2 = 0816

Given a memory address, we can get the value from that
address in constant time. Looking up an index in a list is O(1)!

61

8 bytes 8 bytes 8 bytes

lst

"A" "B" "C" "D" "E"

0800 8 bytes 8 bytes

Combine the Concepts
To implement constant-time search, we want to combine the ideas of post
boxes and list index lookup. Specifically, we want to determine which index
a value is stored in based on the value itself.

If we can calculate the index based on the value, we can retrieve the value
in constant time.

62

Hash Functions Map Values to Integers
In order to determine which list index should be used based on the value
itself we'll need to map values to indexes (integers).

We call a function that maps values to integers a hash function. This
function must follow two rules:

◦ Given a specific value x, hash(x) must always return the same output i

◦ Given two different values x and y, hash(x) and hash(y) should usually
return two different outputs, i and j

63

Built-in Hash Function
We don't need to write our own hash function most of the time- Python
already has one!

x = "abc"

hash(x) # some giant number

hash() works on integers, floats, Booleans, strings, and some other types
as well.

64

Hashtables Organize Values
Now that we have a hash function, we can use
it to organize values in a special data structure.

A hashtable is a list with a fixed number of
indexes. When we place a value in the list, we
put it into an index based on its hash value
instead of placing it at the end of the list.

We often call these indexes 'buckets'. For
example, the hashtable to the right has four
buckets. Important: actual hashtables have far
more buckets than this.

65

index 0 index 1 index 2 index 3

Adding Values to a Hashtable
For simplicity, let's say this hashtable uses a hash
function that maps strings to indexes using the first
letter of the string, as shown to the right. (This is not
a good hash function, but it will serve as an
example).

First, add "book" to the table. hash("book") is 1,
so we'll put the value in bucket 1.

Next, add "yay". hash("yay") is 24, which is
outside the range of our table. How do we assign it?

Use value % tableSize to map integers larger
than the size of the table to an index. 24 % 4 = 0,
so we put "yay" in bucket 0.

66

def hash(s):
number of letters between
first letter and 'a'
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"book""yay" "book"

Dealing with Collisions
When you add lots of values to a hashtable,
two elements may collide. This happens if they
are assigned to the same index. For example, if
we try to add both "cmu" and "college" to
our table, they will collide.

Hashtables are designed to handle collisions.
One algorithm for handling collisions is to put
the collided values in a list and put that list in
the bucket. If your table size is reasonably big
and the indexes returned by the hash function
are reasonably spread out, each bucket will
normally hold a constant number of values.

Our example hash function is not good because
it only looks at the first letter. A function that
uses all the letters would be better.

67

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "college""yay" "book" "cmu"
"college"

You Do: Search a Hashtable
Let's say that we want to
algorithmically check whether the
string "friday" is in our hashtable.

You do: Which buckets does the
algorithm need to check?

68

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book""yay" "book" "cmu""yay" "book" "college""yay" "book" "cmu"
"college"

Activity Answer
You only have to check one index – index 1.

69

Searching a Hashtable is O(1)!
To search for a value, call the hash function on
it and mod the result by the table size. The
index produced is the only index you need to
check!

For example, we can check if "book" is in the
table just by checking bucket 1.

If the value is in the table, it will be at that
index. If it isn't, it won't be anywhere else
either. To check for "stella" just look in in
bucket 2.

Because we only need to check one index and
each index holds a constant number of items,
finding a value is O(1).

70

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"college"

Caveat: Don't Hash Mutable Values!
What happens if you try to put a list in a
hashtable? Let's set lst = ["a", "z"] and
use the given hash to add lst.

This might seem fine at first, but it will become
a problem if you change the list before
searching. Let's say we set lst[0] = "d".

When we hash the list again, the hashed value
is 3, not 0. But the list isn't stored in bucket 3!
We can't find it reliably.

For this reason, we don't put mutable values
into hashtables. If you try to run the built-in
hash on a list, it will crash.

71

def hash(s):
return ord(s[0]) - ord('a')

index 0 index 1 index 2 index 3

"yay" "book" "cmu"
"college"

"yay"
["a", "z"]

"book" "cmu"
"college"

"yay"
["d", "z"]

"book" "cmu"
"college"

"yay"
["a", "z"]

"book" "cmu"
"college"

Dictionaries Use Hashed Search
Because hashed search requires immutable search values and a hashtable,
it isn't used in lists or strings. However, it is used to implement dictionary
search.

Recall that the keys of a dictionary must be immutable. This is because
those keys are all stored in a hashtable. Each key points to its own value;
that's how values can still be accessed.

This means that searching for a key in a dictionary takes O(1) time!
Dictionaries are super efficient for basic lookup tasks.

72

Searching Dictionaries vs. Lists
Recall the built-in operator in, which checks for membership in a data structure.

item in lst runs in linear time if lst is a list, because Python can't guarantee
that the list is sorted. It uses linear search.

item in dict runs in constant time if dict is a dictionary due to hashing.

If you know that you'll need to do a lot of searching for specific values, it's better
to store your data in a dictionary than a list, even if its a sorted list.

73

Coding Efficiently With Dictionaries
Here's an example of how to increase a
function's efficiency with dictionary search. Say
you want to check whether there are any
duplicates in a dataset. This is commonly
needed in data analysis to make sure
datapoints aren't double-counted.

If we try to check every element in a list using
in, it will take O(n2) time (n-1 actions * n items
checked).

If we instead move the items to a dictionary, it
takes O(n) time (constant actions * n items
checked).

def hasDuplicates(studentIDs):

for i in range(len(studentIDs)):

others = studentIDs[:i] + studentIDs[i+1:]

if studentIDs[i] in others:

return True

return False

vs

def hasDuplicates(studentIDs):

studentDict = { }

for student in studentIDs:

if student in studentDict:

return True

else:

studentDict[student] = 1

return False

74

Learning Objectives
Recognize linear search and binary search when reading and writing code to
search for items in sorted lists

Identify the worst case and best case inputs of functions

Calculate a specific function or algorithm's efficiency using Big-O notation

Recognize the requirements for building a good hash function and a good
hashtable that lead to constant-time search

75

