
#5-1: Simulation
CS SCHOLARS – PROGRAMMING

Hw4 Overview
Week4 was a bit overpacked – sorry about that!

Can spend Wednesday finishing missing problems
(getCharacterLines, drawPixelArt, gradebookSummary), then do
Hw5 on Friday/Monday/Wednesday.

Quick review of Hw4 Written – Parsing Data.

2

Hw5 Overview
◦ A few core problems (three written, one programming)

◦ Recommendation: try to complete and submit these by this Friday. We'll grade &
give feedback on them over the weekend.

◦ Can resubmit until following Wednesday though

◦ One larger project: Tetris or a self-designed project

◦ Complete and submit by next Wednesday

◦ Submissions will remain open until following Friday, but Wednesday is strongly
preferred

◦ If doing the self-designed project, contact Prof. Kelly by this Friday

3

Learning Goals
Represent the state of a system in a model by identifying components and
rules

Visualize a model using graphics

Update a model over time based on rules

Update a model after events (mouse-based and keyboard-based) based
on rules

4

Simulations and Models

5

Simulations are Imitations of Real Life
A simulation is an automated
imitation of a real-world event.

By running simulations on different
starting inputs, and by interacting
with them while they run, we can
test how the event will change
under different circumstances.

6

Examples of Simulations
Simulation is used across many different fields, including training people,
testing designs, and making predictions (like whether a flight plan will
work, or how a pandemic will evolve over time).

7

Simulations vs. Real-world Experiments
Simulations share a lot in common with real world experiments. Major
differences include:

◦ Experiments run in real time; simulations can be sped up, slowed down, or
paused.

◦ Experiments can be expensive; simulations are fairly cheap.

◦ Experiments include all possible factors; simulations only include factors we
program in.

8

Example Simulations
You can explore simulations across a variety of fields on the site NetLogo.

◦ Ant colony movements

◦ Flocking behavior

◦ Gravitational forces

◦ Climate change

◦ Fire spreading

◦ Rumor mills

9

http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Ants.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Biology/Flocking.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Chemistry%20&%20Physics/Mechanics/Unverified/N-Bodies.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Earth%20Science/Climate%20Change.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Earth%20Science/Fire.nlogo
http://www.netlogoweb.org/launch#http://www.netlogoweb.org/assets/modelslib/Sample%20Models/Social%20Science/Rumor%20Mill.nlogo

Simulations Run on Models
How do we program a simulation? You need to design a good model, which will
mimic the part of the real world you want to study. The simulation represents
how the system represented by the model changes over time, or how it changes
based on events.

Models are composed of two parts:
◦ The components of the system (information that describes the world at an exact

moment).
◦ The rules of the system (how the components should change as time passes/events

occur).

Components are like variables, and rules are like functions!

10

Example Model
Problem: how will increasing the price of bread over the course of a few
months affect how many people buy bread?

Model Components: current price; delta change in price; overall consumer
count; distribution of consumer incomes

Model Rules: supply/demand relationship for bread; relationship between
income and max amount willing to pay

11

Activity: Design a Model
Problem: say we want to track how many birds are in a local area over
time.

You do: What are the components of this model? What are the rules?

12

Coding a Simulation

13

Simulation Parts in Code
We'll implement simulations in this class graphically, like in NetLogo, using
Tkinter.

Our simulation code will be composed of three parts:
◦ A model which stores the core components in a shared data structure and

implements core rules in functions

◦ Time and event controllers which tell the model when to run rules that
update the components

◦ A graphical view which repeatedly displays the current state of the model

14

Model, View, Controller

15

Model

Controller View

Making the Components
We need to be able to pass the whole model around the code as a single variable. We'll do this by
creating an object called data and adding components to that object.

These components will act just like variables; the only difference is that we'll use data.componentName
instead of componentName by itself. It's similar to when we import a library or call a method on a list.
For example, to store information about a circle that represents some part of the model, we could set:

data.x = 200
data.y = 200
data.r = 50

By storing all the components in one structure we can pass the same structure around to all the functions
we write using aliasing. This will let us update components in a rule function, then display the updated
data in a view function.

Note: you can do a lot more than this with objects! To learn more, check out the Advanced Programming
slides from week2.

16

Displaying the Model
To display the whole model, we'll use Tkinter to draw graphics that represent the components
visually. By referring to component values in data in the view function, we can make graphics
that change alongside the model.

For example, if data.x = 200, data.y = 200, and data.r = 50, we could draw a circle
with:

canvas.create_oval(data.x – data.r, data.y – data.r,

data.x + data.r, data.y + data.r)

We'll erase and re-draw the graphics window every time the rules of the simulation run. If we
change the components a little bit at a time, this makes the display appear to update smoothly.

17

Running the Rules
We can run the simulation rules in two ways: either over a period of time or when
events happen (or both!). We'll address the time controller first, then the event
controller later.

The time controller will create a time loop and call a function that implements the
model's rules within that time loop at equal time intervals. By calling this function
continuously, we can simulate time passing.

If the model's rules change the model's components in data, this will simulate the
model changing over time!

data.x = data.x + 5 # move the circle to the right

18

Simulation Functions
We'll use a new simulation framework that you can find linked on the course
website to support our simulations. This framework manages the controllers for
you; you just need to focus on implementing the model and the view. To do this,
update three functions to build a simple simulation:

◦ init(data)makes the original components. data is the model object

◦ timerFired(data) runs the rules to update data.

◦ redrawAll(canvas, data) displays the model. canvas is a Tkinter canvas

This is different from the code we're used to because the functions work
together instead of running in a sequential order.

19

Simple Example – Color-Changing Ball
Let's start with a simple simulation. Say we want to draw a circle and have the
color of the circle change over time.

The components should hold any values that might change. In this case, that's
the color of the circle. Set an initial component value in init.

The rules should describe how the model changes over time. In this case, we
change the color in the shared data model with every call to timerFired.

The view should draw a circle in the middle of the window and set its color based
on the color in the model. This is done in redrawAll.

20

Simple Example Code
def init(data):

put variables in data here
data.color = "red"

def redrawAll(canvas, data):
(200, 200) is center point
make sure to reference data for the parts that change!
canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,

fill=data.color)

def timerFired(data):
import random
Let's pick a color randomly!
newColor = random.choice(["red", "orange", "yellow",

"green", "blue", "purple"])
data.color = newColor # update data to change the model

21

Activity: Make the circle grow
You do: open the simulation starter code and copy in the functions from
the previous slide. Run the code to make sure it works, then modify the
code in the three functions so that the circle grows larger as time passes.

Hint: you'll need to add one component to the model, the thing that is
changing. You should change that component in timerFired and access
it while drawing the circle in redrawAll.

22

Interaction Events
The second kind of controller is one that captures events.

An event represents a single user interaction with the computer system. Events
come in many forms: keyboard presses, mouse clicks, touchpad gestures, button
presses, touchscreen presses, etc...

When you take an action on your computer, a signal is sent from the computer
hardware to any programs that are currently running. That signal has information
about the type of the event (key press vs. mouse click), plus any additional
information that might be useful (which key was pressed).

23

Event Rules
To deal with Key and Mouse events, we'll introduce two new rule functions to our
simulation framework:

◦ keyPressed(event, data)
◦ mousePressed(event, data)

Each of these takes data (our components data structure) and event, an event object
that contains the information about the event.

These work like timerFired(data) – we update data, then the controller refreshes
the view immediately afterwards. This lets us make visible changes to the model.

24

keyPressed Events
In keyPressed, the event parameter contains two values we can access with a
. (like string or list methods and the data components):

◦ event.char is a string that holds the character pressed

◦ event.keysym is a string that holds the 'name' of the character, for
characters we can't show in a string (e.g., Enter or BackSpace)

If we want to draw the last-pressed character in the middle of the screen, for
example, we would store that character in data, then draw it in redrawAll:

def keyPressed(event, data):

data.text = event.char

25

Example Key Event
def init(data):

data.color = "red"
data.tmp = "" # need to hold partial strings

def redrawAll(canvas, data):
canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,

fill=data.color)

def keyPressed(event, data):
build up a color string one char at a time until user presses Return
if event.keysym != "Return":

data.tmp += event.char
else:

move the color into data.color
data.color = data.tmp
data.tmp = ""

26

Activity: move circle up/down
You do: take the simulation code from the last activity (growing circle) and
update it so that the circle moves up when the user presses the up key
and down when the user presses the down key.

Note: you should use event.keysym. You'll be able to check it against
"Up" and "Down".

27

mousePressed Events
In mousePressed, the event parameter holds the pixel location where the user
clicked on the canvas.

◦ event.x is the x location

◦ event.y is the y location

If we want to move a circle around the canvas to be centered wherever you click,
we'd need to store the center location and draw the circle based on the model
location in redrawAll:

def mousePressed(event, data):
data.cx = event.x
data.cy = event.y

28

Example Mouse Event
def init(data):

data.color = "red"

def redrawAll(canvas, data):
canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,

fill=data.color)

def mousePressed(event, data):
import random
newColor = random.choice(["red", "orange", "yellow",

"green", "blue", "purple"])
Check if the user clicked inside the circle
Is the distance between the center and the click less than the radius?
if ((event.x - 200)**2 + (event.y - 200)**2)**0.5 <= 50:

data.color = newColor

29

Activity: make circle shrink
You do: take your code from the previous activity and modify it so that the
circle shrinks whenever the user clicks inside it.

You can start with the bounds check from the previous slide, but you'll
need to change what happens in the conditional body!

30

Summary: Model, View, Controller
Throughout the process of building these simulations, we've structured
code based on the model, view, controller framework.

Model: manages the components and rules of the thing we're simulating

View: displays the data in the model so that the user can look at it

Controller: manages time loops and events that provide changes to the
model

31

Sidebar: Controller Functions – Time Loop
The starter code we provide helps the simulation run smoothly. You don't need to understand
this code, but here's more details if you're interested.

The time controller in the function timeLoop calls our function timerFired, then calls
redrawAll to update the view. It simulates a time loop with the built-in function
canvas.after. This function calls timeLoop again (like an infinite loop) but pauses before
making the call. That lets us repeat infinitely without freezing the window.

The function runSimulation(width, height, rate) sets up this time loop. You can speed
up/slow down the simulation by changing rate in the function call.

You can also change the window size by changing width and height in the function call
arguments.

32

Sidebar: Controller Functions – Event Loop
The event controller runs an event loop to capture the signals that the computer sends out,
similar to the time loop discussed before. However, events occur irregularly, unlike regularly-
timed rules.

To implement this event loop, we'll have our simulation system constantly listen for events.
When an event occurs, the controller will catch it and send the event data on to the correct rule
function; then it will tell the view to update. This is done with a special kind of Tkinter function
called bind and is provided in the starter code.

With Tkinter we can listen for and bind functions to lots of different event types. We'll care about
just two: <Key>, a key press, and <Button-1>, a left mouse click. There are lots of other Tkinter
events we can implement if we want them:

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-types.html

33

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-types.html

Learning Goals
Represent the state of a system in a model by identifying components and
rules

Visualize a model using graphics

Update a model over time based on rules

Update a model after events (mouse-based and keyboard-based) based
on rules

34

