
#5-2: Large Projects
CS SCHOLARS – PROGRAMMING

Learning Goals
Use try/except structures to handle direct user input in code

Implement and use helper functions in code to break up large problems
into solvable subtasks

2

Try/Except Structures

3

Reminder: Getting Input from the User
Recall from earlier in the program that the built-in function input(msg) displays a
message in the interpreter, lets the user type a response in the interpreter, then returns
the response as a string when the user presses enter.

name = input("Enter your name: ")

print("Hello, " + name + "!")

input will always return a string. If we want to use a user's response as a number, we
need to use type-casting to change it.

age = int(input("Enter your age: "))

print("You'll be", age + 1, "next year")

4

Handle User Errors with Try-Except Statements
What happens if we ask the user to enter a number and try to convert
their text to a number, but they enter a non-number instead?

The code will throw a ValueError when it tries to convert the text to an
int. This is not great, because users get frustrated if the program crashes
each time they make a mistake.

In order to make a program robust against human errors, we can use a try-
except control structure to recover from such errors.

5

Try-Except Statements
A Try-Except statement looks like this:

try:

<try-block>

except:

<what to do if the try code throws an error>

This works a bit like an if-else statement. Go to the try block first. If the code in the try block
runs correctly, the except block is skipped. Alternatively, if Python encounters a runtime error in
the try block, it immediately exits that block and jumps to the beginning of the except block.

6

Example: Inputting a Number
Let's try our age-entering program again, this time with error handling.

try:

age = int(input("Enter your age:"))

print("You'll be", age + 1, "next year")

except:

print("That's not a real age!")

Note that the first print statement does not run if the user enters a non-number into the
input.

7

Example: Opening a File
Try-except statements are also useful when you write code that needs to read from
files! They provide an easy way to deal with files that aren't where they're supposed to
be.

try:

f = open("data.txt", "r")

text = f.read()

f.close()

except:

print("Could not find data.txt")

text = ""

8

Activity: Write error-catching code
You do: write a short snippet of code that asks the user to enter two
numbers (with two separate input() calls), then prints the result of
multiplying those two numbers. If at least one of the inputs isn't a number,
print an error message using an except block.

Test your code by trying good inputs (two inputs) and bad inputs of
different kinds.

9

User Input Loops Ensure Correct Inputs
Sometimes you might need to try several times to get the user to input a
valid option into the program.

When you need to get a real input from a user, use a loop to continue
asking them for input until they get it right.

What's the loop control variable? You could use the variable you're setting
based on the user's entry. You could also use while True, then break
when you get the right input.

10

Example: Entering y/n
For example, let's write a simple program that requires the user to respond with either y (yes) or n (no).

answer = ""

while True:

answer = input("Do you like ice cream? [y/n]:")

if answer == "y" or answer == "n":

break

else:

print("Seriously, answer the question.")

if answer == "y":

print("Me too!")

else:

print("Lactose intolerance sucks :(")

11

Activity: Update the Code
You do: modify your code from before to force the user to keep entering
answers with input until they actually give you two integers. Use a
while loop to do this!

12

Helper Functions

13

Helper Functions
In Hw5 (and in projects you might work on outside of this program), the code you
write will be bigger than a single function. You'll often need to write many
functions that work together to solve a larger problem.

We call a function that solves part of a larger problem this way a helper function.
By breaking up a large problem into multiple smaller problems and solving those
problems with helper functions, we can make complicated tasks more
approachable.

We used helper functions in the simulation framework to break up a simulation
into different parts!

14

Designing Helper Functions
How can you determine which helper functions are needed to solve a
problem?

Try to identify subtasks that are repeated or are separate from the main
goal; break down the problem into smaller parts. Have one subtask per
function to keep things simple.

15

Example: Tic-Tac-Toe
Consider the game tic-tac-toe. It seems simple, but it involves multiple
parts to play through a whole game.

Discuss: what are the subtasks of tic-tac-toe?

16

Breaking down Tic-Tac-Toe
Let's organize our tic-tac-toe game based on four core subtasks:

makeNewBoard(), which constructs and returns the starter board

showBoard(board), which displays a given board

takeTurn(board, player), which lets the given player make a move on the board

isGameOver(board), which returns True or False based on whether or not the game is over

We'll program the whole thing as a class, but the most important thing to focus on is how we
use the helper functions in the main code.

17

makeNewBoard and showBoard
makeNewBoard and showBoard are
simple; we can program these just
using concepts we've already learned.

The board will be a 3x3 2D list with "."
for empty spaces, "X" for player X, and
"O" for player O.

We'll call these functions in a main
function that will actually run the game.

Construct the tic-tac-toe board
def makeNewBoard():

board = []
for row in range(3):

Add a new row to board
board.append([".", ".", "."])

return board

Print the board as a 3x3 grid
def showBoard(board):

for row in range(3):
line = ""
for col in range(3):

line += board[row][col]
print(line)

18

takeTurn
takeTurn uses the concepts we just went over
in the User Input section!

Have the user input the row and col they want
to fill in. Check to make sure the row and col
are numbers with try/except and ensure that
they show a valid and unfilled space with if
statements.

Keep looping until a valid location is chosen.
Update the board at that spot, then return the
updated board.

Ask the user to input where they want
to go next with row,col position
def takeTurn(board, player):
while True:

try:
row = int(input("Enter a row for " + \

player + ":"))
col = int(input("Enter a col for " + \

player + ":"))
Make sure its in the grid!
if 0 <= row < 3 and 0 <= col < 3:

if board[row][col] == ".":
board[row][col] = player
stop looping when move is made
break

else:
print("That space isn't open!")

else:
print("Not a valid space!")

except:
print("That's not a number!")

return board

19

isGameOver needs more helper functions
isGameOver is a bit more complicated.
There are multiple scenarios where the
game can end- if a player gets three in a
row horizontally, or vertically, or
diagonally. The game can also end if the
board is filled.

Use more helper functions to break up
the work into parts! Generate strings
holding all rows/columns/diagonals
with horizLines, vertLines, and
diagLines.

Generate all horizontal lines
def horizLines(board):
lines = []
for row in range(3):
lines.append(board[row][0] + board[row][1] + \

board[row][2])
return lines

Generate all vertical lines
def vertLines(board):
lines = []
for col in range(3):
lines.append(board[0][col] + board[1][col] + \

board[2][col])
return lines

Generate both diagonal lines
def diagLines(board):
leftDown = board[0][0] + board[1][1] + \

board[2][2]
rightDown = board[0][2] + board[1][1] + \

board[2][0]
return [leftDown, rightDown]

20

isGameOver and isFull
We can also make a separate function to check
whether the board is full.

Now all we need to do in isGameOver is call
our functions. First, check whether the board is
full. If it isn't, generate all the lines and check
whether any hold "XXX" or "OOO". Much
easier!

Note that when we call the helper functions,
we have to pass in the needed data as
arguments to the call. For now, that's just the
board.

Check if the board has no empty spots
def isFull(board):

for row in range(3):
for col in range(3):

if board[row][col] == ".":
return False

return True

True if game is over, False is not
def isGameOver(board):

if isFull(board):
return True

allLines = horizLines(board) + \
vertLines(board) + \
diagLines(board)

for line in allLines:
if line == "XXX" or line == "OOO":

return True
return False

21

Put it All Together
Now we can finally write the main function!

Start by calling makeNewBoard to generate the
board. Display the starting state by calling
showBoard.

Use a loop to iterate over every turn in the game.
Alternate a Boolean variable to decide whether it's
X's or O's turn, and call takeTurn on the board and
the appropriate player to decide which move to
make. Call showBoard again each time to show the
updated board.

Keep looping until the game is over by checking
isGameOver in the loop condition.

def playGame():

print("Let's play tic-tac-toe!")

board = makeNewBoard()

showBoard()

player1Turn = True

while not isGameOver(board):

if player1Turn:

board = takeTurn(board, "X")

else:

board = takeTurn(board, "O")

showBoard()

player1Turn = not player1Turn

print("Goodbye!")

22

Learning Goals
Use try/except structures to handle direct user input in code

Implement and use helper functions in code to break up large problems
into solvable subtasks

23

