
#5-3: Experimentation
CS SCHOLARS – PROGRAMMING

Announcements
◦ Will review drawPixelArt / gradebookSummary at beginning of class

tomorrow

◦ What should we cover for the bonus Tuesday lecture? Will run a poll on Slack

◦ Options include: CS ethics, recent CS trends, CS history, efficiency, dictionaries,
limits of computation, and more!

2

Learning Goals
Use Monte Carlo methods to estimate the answer to a question

Organize animated simulations to observe how systems evolve over time

3

Randomness

4

Random Functions
Most simulations use randomness in some way; otherwise, every run of the simulation will
produce the same result.

Recall the random library, which we learned about early in the program. This module included
several useful functions we can use:

random.random() # pick a random float between 0-1

random.randint(x, y) # pick a random number in a range

random.choice(lst) # chooses an element randomly

random.shuffle(lst) # destructively shuffles the list

5

Computing Randomness
How is it possible for us to generate random numbers this way?

Randomness is difficult to define, either philosophically or mathematically.
Here is a practical definition: given a truly random sequence, there is no
gambling strategy possible that allows a winner in the long run.

But computers are deterministic – given an input, a function should always
return the same output. Circuits should not behave differently at different
points in time. So how does the random library work?

6

True Randomness
To implement truly random behavior, we can't use an algorithm. Instead,
we must gather data from physical phenomena that can't be predicted.

Common examples are atmospheric noise, radioactive decay, or thermal
noise from a transistor.

This kind of data is impossible to predict, but it's also slow and expensive
to measure.

7

Pseudo-Randomness
Most programs instead use pseudo-random numbers for casual purposes. A
pseudo-random number generator is an algorithm that produces numbers which
look 'random enough'. Each number the algorithm generates acts as a starting
place to generate the next one.

By calling the function repeatedly, the algorithm generates a sequence of
numbers that appear to be random to the casual observer.

The number sequence generated by a pseudo-random number generator isn't
truly random; if someone figures out the algorithm, they can predict the results.
But it is random enough to use for casual purposes.

8

Monte Carlo Methods

9

Randomness in Simulation
Using randomness in a simulation means that the same simulation might
have multiple different outcomes on the same input model. A single run of
a simulation is not a good estimate of the true average outcome.

To find the truth in the randomness, we need to use probability!

10

Law of Large Numbers
The Law of Large Numbers states that if you perform an experiment
multiple times, the average of the results will approach the expected value
as the number of trials grows.

This law works for simulation as well! We can calculate the expected value
of an event by simulating it a large number of times.

We call programs that repeat simulations this way Monte Carlo methods,
after the famous gambling district in the French Riviera.

11

Monte Carlo Method Structure
If we put our simulation code in the function runTrial() and want to find the odds
that a simulation 'succeeds', a Monte Carlo method might take the following format:

def getExpectedValue(numTrials):

count = 0

for trial in range(numTrials):

result = runTrial() # run a new simulation

if result == True: # check the result

count = count + 1

return count / numTrials # return the probability

12

Monte Carlo Example
Every year, SCS holds the Random Distance Race. The length of this race is determined by rolling two dice.
What is the expected number of laps a runner will need to complete?

import random

def runTrial():

return random.randint(1, 6) + random.randint(1, 6)

def getExpectedValue(numTrials):

lapCount = 0

for trial in range(numTrials):

lapCount += runTrial()

return lapCount / numTrials

13

Another Monte Carlo Example
Here's a more complicated example. If we draw a hand of five cards, what are the odds that that hand
forms a straight in Poker (five card values in a row, like 7-8-9-10-Jack)?

First, we need to represent a deck of cards. We'll use a list, and each card will be a two-element list (suit
and value). We can 'draw' five cards from the deck by shuffling the deck and slicing the first five values.

def generateDeck():

deck = []

for suit in ["Club", "Diamond", "Heart", "Spade"]:

for value in range(2, 15): # 2 to Ace (14)

deck.append([suit, value])

return deck

14

Another Monte Carlo Example
To test whether a hand is a straight, extract the card values, sort them, and check
whether each value is exactly one smaller than the next in the list.

def isStraight(hand):

values = []

for card in hand:

values.append(card[1])

values.sort()

for i in range(len(values)-1):

if values[i] != values[i+1] - 1:

return False

return True

15

Another Monte Carlo Example
To calculate the odds, just keep shuffling the deck and drawing cards!

def calculateOdds(trials):

count = 0

deck = generateDeck()

for trial in range(trials):

random.shuffle(deck)

hand = deck[:5] # first five cards

if isStraight(hand):

count += 1

return count / trials

16

Activity: Monte Carlo Methods
You do: what are the odds that a hand in Poker forms a flush (five cards of
the same suit)? Do those odds change if we play Poker with hands of six
cards instead of five?

Write the code to find the odds of this happening. You can start from the
code we wrote in the previous slides.

17

Advanced Simulations

18

Designing a Simulation
We now have all the individual parts of a simulation. All that remains is to
combine these components to design a useful simulation. Let's do an advanced
example by simulating a zombie outbreak.

Goal: we want to determine how many days it takes for the whole world to
become zombies based on different zombie infection rates.

A zombie infection rate is how likely you are to become a zombie if you
encounter a zombie. In other words, how effective are the zombies?

Warning: prepare for a lot of code!

19

Zombie Outbreak Model
Let's simulate our world as a 2D grid. Zombies will move around, but humans will stay
still (they're hiding).

Model: start with 20 humans and 5 zombies in random locations. Also start with an
infection rate.

Rules: every second, move each zombie one square in a random direction on the grid. If
a zombie is touching (bordering) a human, use the infection rate to determine if the
human is turned into a zombie.

View: humans and zombies will both be squares. Humans are green (healthy), zombies
are purple (infected).

20

Programming the Model
def init(data):

data.rate = 0.5 # 50% chance a human becomes infected on contact
data.size = 20 # grid is 20 x 20
data.numCalls = 0 # track number of days passed
A 'creature' has a row, a column, and a species- human or zombie
data.creatures = []
Start with 20 humans and 5 zombies randomly placed
for human in range(20):

each creature has a row, col, and species in a list
data.creatures.append([random.randint(0, data.size-1),

random.randint(0, data.size-1), "human"])
for zombie in range(5):

data.creatures.append(([random.randint(0, data.size-1),
random.randint(0, data.size-1), "zombie"])

21

Programming the View
def redrawAll(canvas, data):

Draw an underlying grid

cellSize = 400 / data.size # 400 is the window size

for row in range(data.size):

for col in range(data.size):

canvas.create_rectangle(col*cellSize, row*cellSize,

(col+1)*cellSize, (row+1)*cellSize)

Then draw creatures on top

for creature in data.creatures:

row = creature[0]

col = creature[1]

species = creature[2]

if species == "human":

color = "green"

else:

color = "purple"

canvas.create_rectangle(col*cellSize, row*cellSize,

(col+1)*cellSize, (row+1)*cellSize, fill=color)

22

Programming the Rules – Zombies Move
def timerFired(data):

zombies = [] # To check if zombies are close to humans
for creature in data.creatures:

if creature[2] == "zombie": # species
zombies.append(creature)
Move in a random direction
move = random.choice([[-1, 0], [1, 0], [0, -1], [0, 1]])
creature[0] += move[0] # row
creature[1] += move[1] # col
Make sure they don't move offscreen!
if not onscreen(creature, data.size):

creature[0] -= move[0]
creature[1] -= move[1]

Need to be within both the width and the height
def onscreen(creature, size):

return 0 <= creature[0] < size and 0 <= creature[1] < size

23

Programming the Rules – Infecting Humans
def timerFired(data):

...
for creature in data.creatures:

if creature.species == "human":
Check if any zombie is touching this human
for zombie in zombies:

if bordering(creature[0], creature[1],
zombie[0], zombie[1]):

odds = random.random() # roll the dice, figuratively
if odds < data.rate:

creature[2] = "zombie" # zombify!

If in the same row and at most one apart, you're bordering
def bordering(row1, col1, row2, col2):

if row1 == row2 and abs(col1 - col2) <= 1: return True
elif col1 == col2 and abs(row1 - row2) <= 1: return True
else: return False

24

Programming the Rules – Detecting The End
def timerFired(data):

data.numCalls += 1 # each call is a 'day'

if allZombies(data.creatures):

print(data.numCalls) # number of 'days' that have passed

exit() # this exits the program

...

def allZombies(creatures):

for creature in creatures:

if creature[2] == "human":

return False # any humans? not done yet

return True

25

Experimenting with
Simulations

26

Using Simulations
Once we've programmed a robust simulation, we can change the starting state
to see how it changes the simulation. This is especially useful when we want to
predict certain things about the world.

We can check predictions more quickly by making rate smaller (calling the
simulation more often).

For example: how long will it take for the whole world to become zombies...
◦ In our current code?
◦ If we start with more or fewer humans?
◦ If we start with a higher infection rate?

27

Calculating Outcomes
If we want to explore the simulation, we can run it with the visualization on.

If we just want to find the average results, we can call the init and
timerFired functions from a new function where the time loop becomes a
while loop. Have that function return the number of days it takes to zombify all
the humans.

When we run this function with getExpectedValueswe find the expected
amount of time left for the human race. Monte Carlo solves the problem!

28

Calculating Outcomes Code
def runTrial():

data = Model()
init(data)
while not allZombies(data.creatures):

timerFired(data)
return data.numCalls

def getExpectedValue(numTrials):
dayCount = 0
for trial in range(numTrials):

dayCount += runTrial()
return dayCount / numTrials

print(getExpectedValue(100))

29

Learning Goals
Use Monte Carlo methods to estimate the answer to a question

Organize animated simulations to observe how systems evolve over time

30

