
CS Scholars - Programming Final Evaluation
Evaluation Period: Thursday 07/28 10:30am-12:00pm EST

Name:

AndrewID:

This final evaluation will test the knowledge you have accumulated over the course. You
should complete this evaluation during the class period on Thursday 07/28 (from
10:30am - 12:00pm EST) and submit it to Gradescope by 12:05pm EST on the same
day.

This final evaluation is open-note, but closed to collaboration. You are welcome to
consult the course notes, personal notes, and your past homework assignments during
the evaluation, but you should not communicate with anyone outside of the course staff
during the period of the evaluation. In particular, do not collaborate with other students.

The final evaluation consists of both a written portion and a programming portion. The
written problems should be completed in this starter file; the programming problems
should be completed in the programming starter file.

Written Problems
#1 - Variables and Functions
#2 - Loops
#3 - Debugging and Testing

Programming Problems
#4 - Function Definitions and Conditionals
#5 - Nesting and Strings
#6 - User Interaction



Written Problems

#1 - Variables and Functions
Consider this block of code:

In the first table, list all the variables that occur in the code and their values and types
at the end of the code run. You may not need to use all the lines of the table.

Variable Value Type

In this table, list all the functions that are called in this code, their arguments, and their
returned values. Again, you may not need to use all the lines in the table.

Function Arguments Returned Value



#2 - Loops
Consider this block of code:

For both the for loop and the while loop, write in the loop control variable's name,
start value, continuing condition, and update action.

Loop Name Start Value Continuing Condition Update Action

For

While

In the box below, write what is printed to the interpreter when the code above runs.



#3 - Debugging and Testing
A friend asks you for help with a program they're writing. Their code is supposed to take
a list of strings, return True if the strings are all in length order (each string is the same
length or longer than the string that came before it), and return False if it's out of order.
The code doesn't always work as expected, but it doesn't cause any syntax or runtime
errors, and it passes the test set they wrote. Their code and tests are included below:

Give an example of a test case you would add to make the test set more robust, and
explain why you would add it.

Briefly describe a debugging strategy you might use to find the problem after adding a
new test case.



Programming Problems

#4 - Function Definitions and Conditionals
Write a Python function, probableRobot, which takes information about a person filling
out a form online and returns a Boolean representing whether or not that person is
probably a robot.

The function takes three arguments (in this order): checkedBox (a Boolean, whether or
not the person checked a box saying they are not a robot); responseSpeed (an integer,
the number of milliseconds it took for the person to check the box); and cookieHistory

(a list of strings, past interactions the person has had with the website).

The function should return True if either of two conditions is met:
● The user did not check the box (checkedBox is False)
● The user checked the box too quickly (responseSpeed is less than 10

milliseconds) and the user has no history with the website (the cookieHistory

list is empty)

Otherwise, the function should return False.

For example, probableRobot(False, 8, ["cookie"]) would return True because
checkedBox is False. probableRobot(True, 326, []) would return False because
checkedBox is True, and though cookieHistory is an empty list, responseSpeed is
not less than 10.

Note that for this problem, a function header is not provided; you'll need to write the full
function header yourself. You should write this function under the comment
''' #4 - Function Definitions and Conditionals '''



#5 - Nesting and Strings
Write a Python function getPunctuationFrequency(text, punc) which takes two
strings - a piece of text and a single character (a punctuation mark) - and returns the
frequency of how often that punctuation mark occurs in the text compared to other
punctuation marks. We define punctuation marks as the characters in the library
variable string.punctuation, which holds the string
"!"#$%&'()*+,-./:;<=>?@[\]^_`{|}~".

For example, getPunctuationFrequency("Really?! I don't know, is that

true?? I guess I'm excited then!", "?") would find 3 "?" characters in the
string and 8 total punctuation marks, for an overall frequency of 3/8 = 0.375, and would
return 0.375.

If the given text contains no punctuation marks, you should return 0, not NaN.

#6 - User Interaction
Using our interaction framework, write an interactive program where the user can
manipulate the size, position, and color of a rectangle using their mouse and keyboard.
Specifically, the user should be able to do the following:

● The rectangle grows and shrinks vertically in response to key presses: If
the user presses the up key, the rectangle should grow in height by 10 pixels (the
top should move 5 pixels further up, and the bottom move 5 pixels further down).
Likewise, if the user presses the down key, the rectangle should shrink in size by
10 pixels (the top moves 5 pixels down and the bottom moves 5 pixels up). The
user should not be able to shrink the rectangle below 10 pixels in size.

● The rectangle moves horizontally in response to mouse clicks: If the user
clicks to the left or right of the rectangle, outside of the bounds of the rectangle,
the rectangle moves so that it is horizontally centered in the clicked location.
However, the vertical center should remain the same, so the rectangle only
moves horizontally, not vertically.

● The rectangle changes color in response to key presses: if the user presses
the 'r' key, the color changes to red; when the user presses 'g', it becomes green;
when the user presses 'b', it becomes blue.

● The rectangle changes color in response to mouse clicks: if the user clicks
inside the rectangle (inside both vertical and horizontal bounds), the rectangle
color changes to a randomly-chosen color (orange, yellow, or purple).

Outside of these constraints, you can design the program however you'd like.


	VariableRow1: 
	ValueRow1: 
	TypeRow1: 
	VariableRow2: 
	ValueRow2: 
	TypeRow2: 
	VariableRow3: 
	ValueRow3: 
	TypeRow3: 
	VariableRow4: 
	ValueRow4: 
	TypeRow4: 
	VariableRow5: 
	ValueRow5: 
	TypeRow5: 
	VariableRow6: 
	ValueRow6: 
	TypeRow6: 
	VariableRow7: 
	ValueRow7: 
	TypeRow7: 
	FunctionRow1: 
	ArgumentsRow1: 
	Returned ValueRow1: 
	FunctionRow2: 
	ArgumentsRow2: 
	Returned ValueRow2: 
	FunctionRow3: 
	ArgumentsRow3: 
	Returned ValueRow3: 
	NameFor: 
	Start ValueFor: 
	Continuing ConditionFor: 
	Update ActionFor: 
	NameWhile: 
	Start ValueWhile: 
	Continuing ConditionWhile: 
	Update ActionWhile: 
	In the box below write what is printed to the interpreter when the code above runs: 
	explain why you would add it: 
	new test case: 
	Text1: 
	Text2: 


