
CS Scholars - Programming Hw1 - Written
Due Date: Friday 07/08 EOD

Name:

AndrewID:

For full credit on the assignment, complete either all Review + Core problems (#1-
#10) or all Core + Spicy problems (#3-#12).

Bonus problems are related to the Advanced Track content, and are optional.

Review Problems - Written
#1 - Running Code
#2 - Function Calls

Core Problems - Written
#3 - Algorithms and Abstraction
#4 - Writing Algorithms
#5 - Reading Code
#6 - Function Components

Core Problems - Programming
#7 - Data Types
#8 - Printing
#9 - Using Function Calls
#10 - Graphics

Spicy Problems - Programming
#11 - Advanced Math
#12 - Advanced Graphics

Bonus Problems
Advanced Programming - External Libraries
Advanced Computer Science - Data Representation

Review Problems - Written

#1 - Running Code
Can attempt after Programming Basics lecture

The following question is intended to make you feel more comfortable with running code
and encountering errors. In each of the following examples, copy the line of code into
the interpreter (next to >>>) and press Enter to run it. Then copy the output in the
interpreter into the space below the code, and check a box below that to indicate
whether the code ran successfully or raised an error.

5 / (4 - 2)

☐ Ran Successfully ☐ Raised an Error

"Hello World

☐ Ran Successfully ☐ Raised an Error

(8 + 3) < (5 * 2)

☐ Ran Successfully ☐ Raised an Error

8 + "two"

☐ Ran Successfully ☐ Raised an Error

#2 - Function Calls
Can attempt after Function Calls lecture

What does each of the following expressions evaluate to?
Hint: what is the returned value of each function call?

Don't just copy and run this code to find the answer- try to determine what the answer is
yourself!

int(15.11)

print(5 + (3 * 2))

round(abs(-19.86), 0)

math.ceil(6.2) # assume we already imported math

Core Problems - Written

#3 - Algorithms and Abstraction
Can attempt after Introductions and Algorithms lecture

In lecture we defined two central concepts of computing: abstraction and algorithms.

First, in your own words, briefly provide your own example of a non-computer algorithm
that could be used in the real world.

Example: the peanut-butter-and-jelly sandwich recipes we came up with in class are
real-world algorithms.

Second, still in your own words, provide your own brief example of non-computational
abstraction that can be found in the real world.

Example: when thinking of animals, you could refer to a creature as a mammal (high
abstraction), a dog (medium abstraction), or a Siberian husky (low abstraction).

#4 - Writing Algorithms
Can attempt after Introductions and Algorithms lecture

In this problem, you will write plain-language algorithms (not code!) at three levels of
abstraction. Assume all of your instructions will be provided verbally (no pictures).
Do not write more than 100 words per question (and can write much less!).

First, write an algorithm at a low level of abstraction that instructs a person on how to
write the capital letter L. Assume the person you are instructing has almost no prior
knowledge- they know directions (up/down/left/right/etc) but nothing else about writing.

Second, write an algorithm at a medium level of abstraction that instructs a person on
how to write the word 'ALL' in English, in all capital letters. This time you can assume
the person you're instructing has a little more prior knowledge- what paper and a
pen/pencil are, how to draw straight lines, etc.

Finally, if you wanted to provide an algorithm on how to write the word 'ALL' in English at
a high level of abstraction, what additional starting knowledge would you give the
person being instructed?

#5 - Reading Code
Can attempt after Programming Basics lecture

Assume the following lines of code are written in the editor and run as a script. Your job
is to figure out what will be shown in the interpreter as a result. Don't just copy and run
this code to find the answer- try to determine what the answer is yourself!

Next to each line in the table, write what will appear in the interpreter based on that line
of code running from the editor. If nothing should appear, leave the box blank. We've
filled in the first two entries for you as an example.

Code Line Interpreter Output

age = 18

print("test") test

print("age")

print(age)

age + 5

print(age / 3)

print(age // 3)

print(age < 18)

print(age * 3)

print(age - 10 * 2)

age = age + 1

print("Age:", age)

age -= 2

print(age)

#6 - Function Components
Can attempt after Function Calls lecture

Each of the following code snippets contains a function call. Identify and describe the
function name, argument value(s) and returned value of each call. If there is no
name / argument / returned value, leave the space blank.

print("Result:", 10 ** 2)

Name Argument Value(s) Returned Value

import random

num = random.random()

Name Argument Value(s) Returned Value

x = 3

y = 2

z = pow(x, y)

Name Argument Value(s) Returned Value

Programming Problems

Each of these problems should be solved in the starter file available on the course
website. They should be submitted to the Gradescope assignment Hw1 - Programming
to be autograded. Make sure to check the autograder feedback after you submit!

For each of these problems (unless otherwise specified), write the needed code directly
in the Python file under the comment and print statement that correspond to the
problem. Do not delete the provided print statements- we're using them to autograde.

Core Problems - Programming

#7 - Data Types
Can attempt after Programming Basics lecture

Write Python code at the top level of the file to do the following:

1. Assign the integer 15 to the variable a.
2. Assign the float 3.14 to the variable b.
3. Assign the string "20" to the variable c.
4. Assign the boolean True to the variable d.
5. Evaluate 5 minus 1.7 and assign that expression to the variable e.
6. Check whether 8 is less than 5 and assign that expression to the variable f.
7. Reassign the variable a to hold the value 45.
8. Concatenate c and "21" and assign the result to variable g. Don't change the

value in c.

Feel free to print any of these variables to check your work.

#8 - Printing
Can attempt after Programming Basics lecture

Write code at the top level of the file to match the following algorithm.

1. Assign the string Kelly to prof.
2. Assign a string holding another CS Scholars student's name to student.
3. Write a single print statement that greets both Prof. Kelly and the student by

name. The statement must use the variables prof and student, as well as at
least one additional string.

#9 - Using Function Calls
Can attempt after Function Calls lecture

Write code at the top level of the file to match the following algorithm:

1. Import the random library and the math library
2. Generate a random integer between [1, 360] and store it in the variable x.
3. Convert the integer value in x to a radian number with a function in the math

library and store the result in the variable r. Hint: use the radians function.
4. Write a single print statement that describes the relationship between the values

in x and r. The print statement must use both variables, as well as at least one
additional string.

#10 - Graphics
Can attempt after Function Calls lecture

Add code to the location designated by # write your code here # that draws a
simple version of the CMU Fence on the canvas. If you have not yet heard of the Fence,
learn more here:
www.amusingplanet.com/2014/09/the-fence-of-carnegie-mellon-university.html

Your Fence must meet the following basic requirements, but otherwise you may
customize it as much as you like.

● The Fence must have at least two columns, with one column ending the left side
of the Fence and one ending the right

● The Fence must have two cross-boards that connect all the columns
● There must be a gap above the top cross-board, between the cross-boards, and

below the bottom cross-board
● The Fence must be painted at least one color

Here's an example of a simple Fence that meets the requirements:

https://www.amusingplanet.com/2014/09/the-fence-of-carnegie-mellon-university.html

Spicy Problems - Programming

#11 - Advanced Math
Can attempt after Programming Basics lecture

Set up two variables, n and k, so that n holds some integer with at least four digits, and
k is some integer between 0-3. Then write code that finds the k'th digit of n from the
right. You should count from 0, so k=0 refers to the ones-digit, k=1 refers to the tens
digit, etc.

For example, with n=9876 and k=2, the k'th digit from the right is 8 (the hundreds digit).

Once you've found the k'th digit, store it in a variable called result, then print out
"kth digit:", then the result, all on one line.

Note: you only need to run this code on one example, but it should work if you change n

and k to other numbers. However, you can assume that both numbers are integers, and
that both will not be negative. Try testing your code on n = 789 with k equal to 0, 1, 2,
and 3 to see if you get the right digits (9, 8, 7, and 0).

Hint: you'll want to use the div and mod operators to modify the number.

#12 - Advanced Graphics
Can attempt after Function Calls lecture

Add code to the location designated by # write your code here - spicy # to draw
a robot of your own design on the Tkinter canvas.

Your robot can look like whatever you want, but for full credit it should use:

● At least 10 shapes total, including at least one oval, one rectangle, one
non-rectangular polygon, and one line.

● At least 2 different optional parameters (like fill or width).

Important note: the last line of the Tkinter code, root.mainloop(), has been
commented out since not all students will attempt this problem. Remove the comment to
see your robot.

Bonus Problems

Advanced Programming - External Libraries

Choose an external library from the advanced programming slides. Install this library on
your machine and write a simple program (at least 5-10 lines of code) to do something
interesting with that library.

Your options for libraries might be limited based on your current programming
knowledge. Here's a quick breakdown of which libraries you should be able to do
something interesting with based on different levels of knowledge.

Just data, variables, and function calls:
● OpenCV
● Pillow

Also function definitions, conditionals, and loops:
● Pygame
● Vpython

Also lists:
● NumPy
● SciPy
● Matplotlib
● Pandas
● Pydub

Also dictionaries:
● nltk
● Beautiful Soup

Also objects:
● Django
● Flask

You should complete this work in a separate file from hw1.py, and upload that file to
Hw1 - Bonus, so that you don't break the autograder.

Advanced Computer Science - Data Representation

For each of the following problems, you must show your work to receive full credit. For
example, to convert 0101 to decimal, you could show 0*8 + 1*4 + 0*2 + 1*1 = 4 + 1 = 5.

Convert 29 from decimal to binary.

Work:

Answer:

Convert 1010101 from binary to decimal.

Work:

Answer:

Convert the following number from binary to ascii. You may wish to refer to this chart:
www.asciitable.com

01001111 01001011

Work:

Answer:

Convert the following three numbers from binary to decimal. Then enter the decimal
numbers into the respective R, G, and B values here:
https://www.w3schools.com/colors/colors_rgb.asp .

What color does this binary represent?

R: 11100110 G: 11110000 B: 00111100

Work:

Answer:

http://www.asciitable.com/
https://www.w3schools.com/colors/colors_rgb.asp

	5 4 2:
	Ran Successfully: Off
	Raised an Error: Off
	Hello World:
	Ran Successfully_2: Off
	Raised an Error_2: Off
	8 3 5 2:
	Ran Successfully_3: Off
	Raised an Error_3: Off
	8 two:
	Ran Successfully_4: Off
	Raised an Error_4: Off
	int1511:
	print5 3 2:
	roundabs1986 0:
	mathceil62 assume we already imported math:
	realworld algorithms:
	abstraction a dog medium abstraction or a Siberian husky low abstraction:
	knowledge they know directions updownleftrightetc but nothing else about writing:
	penpencil are how to draw straight lines etc:
	person being instructed:
	testprintage:
	testprintage_2:
	testage 5:
	testprintage 3:
	testprintage 3_2:
	testprintage 18:
	test printage 3:
	testprintage 10 2:
	testage age 1:
	testprintAge age:
	testage 2:
	testprintage_3:
	NameRow1:
	Argument ValuesRow1:
	Returned ValueRow1:
	NameRow1_2:
	Argument ValuesRow1_2:
	Returned ValueRow1_2:
	NameRow1_3:
	Argument ValuesRow1_3:
	Returned ValueRow1_3:
	Work:
	Answer:
	Work_2:
	Answer_2:
	Work_3:
	Answer_3:
	Work_4:
	Answer_4:
	Text1:
	Text2:

