
CS Scholars Review Notes Sheet

Algorithms & Abstraction

Algorithms: procedures that specify how
to do a task or solve a problem
Abstraction: changing the level of detail
used to represent/interact with a system

Designing algorithms:
Little abstraction: assume no prior
knowledge, need to define everything
Moderate abstraction: assume user has
some basic knowledge already
Heavy abstraction: can make a lot more
assumptions about incoming knowledge

Programming Basics

Integer (int): whole numbers (14)
Floating point number (float): numbers
with a fractional part (5.735)
Boolean (bool): truth value (True)
String (str): text in quotes ("Sup all")
List (list): ordered collection of data
values ([1, 'a'])

Number operations: +, -, *, /, **, %, //
Text operations: +, *
Comparison ops: <, >, <=, >=, ==, !=

Expression: code that evaluates to a
data value
Statement: code that can change the
state of the program

Variable assignment: x = expr stores
the value of expr in the variable x

Variables: x evaluates to the value
stored in the variable x

Augmented assignment: shorthand to
update a variable in place; x += 1

Errors, Debugging, and Testing

Syntax Error: an error that occurs when
Python cannot tokenize or structure
code. Examples: SyntaxError,
IndentationError, Incomplete Error

Runtime Error: an error that occurs
when Python encounters a problem
while running code. Examples:
NameError, TypeError,
ZeroDivisionError

Logical Error: an error that occurs when
code runs properly but does not produce
the intended result. Often (but not
always) caused by a failed test case
with AssertionError

assert(funName(input) == output)

When dealing with an error:
1. Look for the line number
2. Look at the error type
3. For SyntaxErrors, look for the inline

arrow
4. For Runtime Errors, read the error

message
5. For Logical Errors, run the function

call to get the actual output

Debugging Strategies: rubber duck
debugging, printing and experimenting,
thorough tracing

Test Case: a line of code that tests
whether a function when called on a
specific input returns the correct output.
Test normal, large, edge, and special
cases, and produce varying outputs.



CS Scholars Review Notes Sheet

Function Calls

Function: an algorithm implemented
abstractly in Python that can be called
on specific inputs

Arguments: input values to function call
Returned value: evaluated result, the
output. If no output, defaults to None

Side effect: visible things that happen as
the function runs (printing, graphics, etc)

Built-in Functions:
print(expr) - show expr in interpreter
abs(num) - absolute value of num
pow(x, y) - raises x to power of y
round(x, y) - round x to y sig. digits
type(expr) - type of evaluated expr

input(msg) - turns user input into string

Library: a collection of functions that
need to be imported to be used

import libraryName

math.ceil(x) - ceiling of x
math.log(x, y) - log of x with base y

math.radians(x) - degrees to radians
math.pi - pi (to some number of digits)

random.randint(x, y) - random int in
range [x, y]
random.random() - random float in
range [0, 1)

canvas.create_rectangle(a,b,c,d)

- draw a rectangle from point (a, b) to
point (c, d). Use canvas.create_oval

to draw an oval & canvas.create_line

to draw a line with similar coordinates.

canvas.create_polygon(a,b,c,d,e,f)

- draw a polygon using the (x,y) points
canvas.create_text(a,b,text=s) -
draw the text in s at (a,b)
canvas.create_image(a,b,file=f) -
draw the image store in f at (a,b)

Keyword argument: an argument that
can be included or can be left out and
set to a default value. Tkinter examples:
fill, width, font, anchor
canvas.create_rectangle(a,b,c,d,

fill="blue")

Function Definitions

Function definition: abstract
implementation of an algorithm.
Provides input with parameters (abstract
variables), produces a result with a
return statement.

def funName(args):

# body

return result

Local scope: variables in function
definitions (including parameters) are
only accessible within that function.

Global scope: variables at the global
(top) level are accessible at the
top-level, and by any function.

Function Call Tracing: Python keeps
track of the functions it is currently
calling in nested function calls. When
Python reaches a return statement, it
returns the value to the most recent
function that called the current function.



CS Scholars Review Notes Sheet

Booleans, Conditionals, & Errors

Logical operators: and, or, not

Short circuit evaluation: Python only
evaluates the second half of a logical
operation if it needs to

Conditional statement: control structure
that allows you to make choices in a
program.

if booleanExpr:

ifBody

elif booleanExpr:

elifBody

else:

elseBody

Loops

For loop: a control structure that lets you
repeat actions a specific number of
times, or over a specific data structure.

for var in range(rangeArgs):

forBody

for var in sequenceValue:

forBody

Range: a function that generates values
for the loop control variable in a for loop.
Can take 1-3 inputs.

range(end) # [0, end)

range(start, end) # [start, end)

range(start, end, step)

# step provides the increment

While loop: a control structure that lets
you repeat actions while a given
Boolean expression is True

while booleanExpr:

whileBody

Infinite loop: a while loop that never
exits due to the state of the program

Loop control variable: a variable used to
manipulate the number of times a loop
iterates. Requires a start value, update
action, and continuing condition.

Nesting and Top-Down Design

Nesting: a control structure can be
included in the body of another control
structure through use of indentation.

Nested conditionals: when two
conditionals are nested, both must
evaluate to True to reach the inner body

Nested loop: a loop with another loop in
its body. The inner loop is fully executed
for each iteration of the outer loop.

Nesting in functions: when a return
statement is reached in a nested
structure, the function immediately exits.

Helper function: a function that helps
solve a big problem by solving a subpart
of the problem.

Top-down design: solve a complicated
problem by breaking it into several
smaller problems and solving separately



CS Scholars Review Notes Sheet

Strings and Lists

Membership: can check if an item exists
in a sequence or not

value in sequence

Index: access a specific value in a
sequence based on its position.
Positions start at 0 and end at
len(seq)-1. Non-existent indexes
result in IndexError.

seqExpr[index]

Slice: access a subsequence of a larger
sequence based on a given start, end
(not inclusive), and step

seqExpr[start:end:step] # slice

seqExpr[start:end] # also slice

# default to 0:len(seqExpr):1

Looping over sequences: use range and
indexing to access one value at a time.

for i in range(len(seqExpr)):

something with seqExpr[i]

Method: a function called directly on a
data value

result = value.method(args)

Methods:
s.isdigit()/s.islower()/
s.isupper() - checks that property of s

L.count(item) - # times item appears

L.index(x) - index of x, error if missing

s.lower()/s.upper() - makes new
version of s that is lowercase/uppercase

s.replace(a, b) - new version of s
with a replaced by b

s.split(delim) - makes a list of parts
of s separated by delim

Destructive Method: a method that
modifies the value it is called on directly
instead of returning a new result

value.method(args) # no assign

Destructive Methods:
L.append(val) - adds val to end

L.remove(val) - removes val from L

L.sort() - sorts L



CS Scholars Review Notes Sheet

User Interaction

Text-based Interaction: create an
interactive program loop by asking the
user for input with input, using print

to display output, and looping with
while until some condition is met.

Input Validation: ensure that user input
matches requirements, and force them
to type the input again if it doesn't.

Event-Based Interaction: create an
interactive program loop by receiving
input from mouse and keyboard and
displaying output as graphics.

MVC (Model-View-Controller): an
interaction framework where functions
work in tandem using a shared data
structure instead of running sequentially.
Store components in the model; update
graphics from the view; call rule
functions from the controllers.

# set up initial model

# data.var = value

makeModel(data)

# display current model

# use data.var in canvas call

makeView(data, canvas)

# update data.var on key event

# check event.char, event.keysym

keyPressed(data, event)

# update data.var on mouse event

# check event.x, event.y

mousePressed(data, event)

Real-World Coding

Style: the decisions you make while
coding about how to organize and
implement algorithms

Clarity Principles: to write code that is
easy to read, use consistent formatting,
use good naming conventions, don't
include unnecessary code, and
remember to document.

Robustness Principles: to write code
that will be easy to modify later on,
avoid repetitive code, avoid magic
numbers, join up related conditionals,
and test all functions.

External library: a library outside of the
main Python language that can be
installed into Python.

Documentation: instructions on how to
use a library available online. Describes
existing functions and what they do.

Install modules with:
pip install name


