
#2-2: Booleans,
Conditionals, and Errors
CS SCHOLARS – PROGRAMMING

Course Logistics
Hw1 feedback has been released!

Let's go over how to view your feedback on Gradescope.

2

Notes from Hw1
Recap on print (returned value vs. side effect)

Make sure to read instructions carefully! (high abstraction)

3

Awesome Graphics!

4

Learning Goals
Use logical operators on Booleans to compute whether an expression is True or
False

Use conditionals when reading and writing algorithms that make choices based
on data

Use nesting of conditionals and function definitions to create complex control
flow

Recognize the different types of errors that can be raised when you run Python
code

5

Logical Operators

6

Booleans are values that can be True or False
In week 1, we learned about the Boolean type, which can be one of two
values: True or False.

Until now, we've made Boolean values by comparing different values, such
as:

x < 5

s == "Hello"

7 >= 2

7

Logical Operations Combine Booleans
We aren't limited to only evaluating a single Boolean comparison! We can
combine Boolean values using logical operations. We'll learn about three
– and, or, and not.

Combining Boolean values will let us check complex requirements while
running code.

8

and Operation Checks Both
The and operation takes two Boolean
values and evaluates to True if both
values are True. In other words, it
evaluates to False if either value is
False.

We use and when we want to require
that both conditions be met at the
same time.

Example:

(x >= 0) and (x < 10)

a b a and b

True True True

True False False

False True False

False False False

9

or Operation Checks Either
The or operation takes two Boolean
values and evaluates to True if
either value is True. In other words,
it only evaluates to False if both
values are False.

We use or when there are multiple
valid conditions to choose from.

Example:

a b a or b

True True True

True False True

False True True

False False False

10

(day == "Saturday") or (day == "Sunday")

not Operation Reverses Result
Finally, the not operation takes a single
Boolean value and switches it to the
opposite value (negates it). not True
becomes False, and not False
becomes True.

We use not to switch the result of a
Boolean expression. For example, not
(x < 5) is the same as x >= 5.

Example:

not (x == 0)

a not a

True False

False True

11

Activity: Guess the Result
If x = 10, what will each of the following expressions evaluate to?

x < 25 and x > 15

x < 25 or x > 15

not (x > 5 and x < 10)

(x > 5) or ((x**2 > 50) and (x == 20))

((x > 5) or (x**2 > 50)) and (x == 20)

12

Conditionals

13

Conditionals Make Decisions
With Booleans, we can make a new type of code called a conditional.
Conditionals are another form of a control structure – they let us change
the direction of the code based on the value that we provide.

To write a conditional (if statement), we use the following structure:

if <BooleanExpression>:

<bodyIfTrue>

Note that, like a function definition, the top line of the if statement ends
with a colon, and the body of the if statement is indented.

14

Flow Charts Show Code Choices
We'll use a flow chart to demonstrate how
Python executes an if statement based on
the values provided.

print("hello")

if x < 10:

print("wahoo!")

print("goodbye")

wahoo! is only printed if x is less than 10.
But hello and goodbye are always printed.

15

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10True False

The Body of an If Can Have Many Statements
The body of an if statement can have any number of statements in it. As
with function definitions, each statement of the body is on a separate line
and indented. The body ends when the next line of code is unindented.

print("hello")

if x < 10:

print("wahoo!")

print("wahoo!")

print("goodbye")

16

if x < 10, prints:
hello
wahoo!
wahoo!
goodbye

if x >= 10, prints:
hello
goodbye

Else Clauses Allow Alternatives
Sometimes we want a program to do one of two alternative actions based
on the condition. In this case, instead of writing two if statements, we can
write a single if statement and add an else.

The else is executed when the Boolean expression is False.

if <BooleanExpression>:

<bodyIfTrue>

else:

<bodyIfFalse>

17

}
}

if clause

else clause

Updated Flow Chart Example
print("hello")

if x < 10:

print("wahoo!")

else:

print("ruh roh")

print("goodbye")

18

print
'hello'

print
'wahoo!'

print
'goodbye'

if x < 10

print
'ruh roh'

True False

Activity: Conditional Prediction
Prediction Exercise: What will the following code print?

x = 5
if x > 10:

print("Up high!")
else:

print("Down low!")

Question: How can we change the program state to print the other string
instead?

Question: Can we change the state to make the if/else statement print out both
statements?

19

Elif Implements Multiple Alternatives
Finally, we can use elif statements to add alternatives with their own
conditions to if statements. An elif is like an if, except that it is checked only
if all previous conditions evaluate to False.

if <BooleanExpressionA>:

<bodyIfATrue>

elif <BooleanExpressionB>:

<bodyIfAFalseAndBTrue>

else:

<bodyIfBothFalse>

20

Updated Flow Chart Example
print("hello")

if x < 10:

print("wahoo!")

elif x <= 99:

print("meh")

else:

print("ruh roh")

print("goodbye")

21

print
'hello'

print
'wahoo!'

print
'goodbye'

print
'ruh roh'

True
False

True False

print
'meh'

if x < 10

if x <= 99

Conditional Statements Join Clauses Together
We can have more than one elif clause associated with an if statement. In
fact, we can have as many as we need! But, as with else, an elif must be
associated with an if (or a previous elif).

It's impossible to have an else or elif clause by itself, as it would have no
condition to be the alternative to. Therefore, else and elif must be
associated with an if (or a previous elif).

In general, a conditional statement is an if clause with zero or more elif
clauses and an optional else clause that are all joined together. These joined
clauses can be considered a single control structure. Only one clause will have its
body executed.

22

Example: grade calculator
Let's write a few lines of code that takes a grade as a number, then prints
the letter grade that corresponds to that number grade.

90+ is an A, 80-90 is a B, 70-80 is a C, 60-70 is a D, and below 60 is an R.

23

Activity: calculate late fee
You do: write a few lines of code that determine whether a library book is
late. If it isn't, print out a message saying that everything is fine; if it is
late, print out the late fee.

Start with a few variables. maxDays is the number of days a book is
allowed to be checked out; set it to 30. dailyFee is the fine per day once
a book is late; set it to 10 (10 cents). daysPassed can then be the
number of days that you've had the book checked out.

24

Short-Circuit Evaluation
When Python evaluates a logical expression, it acts lazily. It only evaluates the second
part if it needs to. This is called short-circuit evaluation.

When checking x and y, if x is False, the expression can never be True. Therefore,
Python doesn't even evaluate y.

When checking x or y, if x is True, the expression can never be False. Python
doesn't evaluate y.

This is a handy method for keeping errors from happening. For example:

if type(x) == type(y) and x < y:

print("Smaller:", x)

25

Activity: Kahoot!
Let's do a quick Kahoot to practice evaluating Boolean expressions that
may or may not use short-circuit evaluation.

Join the Kahoot here: kahoot.it

26

kahoot.it

Nesting Control Structures

27

Nesting Creates More Complex Control Flow
Now that we have a control structure, we can put if statements inside of
if statements.

In general, we'll be able to nest control structures inside of other control
structures. This can currently be done with if statements and function
definitions.

In program syntax, we demonstrate that a control structure is nested by
indenting the code so that it's in the outer control structure's body.

28

Example: Car rental program
Consider code that determines if a person can rent a
car based on their age (are they at least 26) and
whether they have a driver's license.

We can use one if statement to check their age,
then a second (nested inside the first) to check the
license. We'll only print 'Rental Approved' if both if
conditions evaluate to True.

if age >= 26:
if license == True:

print("Rental Approved")
else:

print("Rental Denied")
else:

print("Rental Denied")

29

print
'Rental Approved'

print
'Rental Denied'

print
'Rental Denied'

True False

True Falseif license == True

if age >= 26

Alternative Car Rental Code
In the code below, we accomplish the
same result with the and operation.

This won't always work, though – it
depends on how many different results
you want.

if age >= 26 and license == True:

print("Rental Approved")

else:

print("Rental Denied")

30

print
'Rental Approved'

print
'Rental Denied'

True False
if age >= 26 and
license == True

Nesting and If/Elif/Else Statements
When we have nested conditionals with elif or else clauses, Python pairs them with
the if clause at the same indentation level. This is true even if an inner if statement
occurs between the outer clauses!

if first == True:

if second == True:

print("both true!")

else:

print("first not true")

Question: if we want to add an else statement to the inner if, where should it go?

In general, an outer if/elif/else statement cannot come between parts of an inner
conditional.

31

Nesting Conditionals in Functions
When we nest a conditional inside a function definition, we can return values
early instead of only returning on the last line. Returning early is fine as long as
we ensure every possible path the function can take will eventually return a
value.

A function will always end as soon as it reaches a return statement, even if
more lines of code follow it. For example, the following function will not crash
when n is zero.

def findAverage(total, n):
if n <= 0:

return "Cannot compute the average"
return total / n

32

Exercise: Convert Flow Chart to Code

33

print
"It's a fish"

print
"It's a dog"

print
"It's a cat"

True

False

print
"What a good pet!"

if numLegs != 4

if wagsTail == True

False

True

Python Errors

34SLIDO: #254501

Syntax Errors Occur due to Bad Syntax
When Python executes your code, it first has to break your text down into tokens, then
structure those tokens into a format that the computer can execute.

The programming language's syntax is a set of rules for how code instructions should be
written. When syntax is correct, Python is able to tokenize and structure code without a
problem.

If the interpreter runs into an error while tokenizing or structuring, it calls that a syntax
error. In other words, you get a syntax error when the code you provide does not follow
the rules of the Python language's syntax.

A syntax error means that none of your code will run, because the syntax can't be
parsed.

35SLIDO: #254501

Examples of Syntax Errors
Most syntax errors are called SyntaxError, which make them easy to spot. For example:

x = @ # @ is not a valid token

4 + 5 = x # the parser stops because it doesn't follow the rules

There are two special types of syntax errors: IndentationError and incomplete error.

x = 4 # IndentationError: whitespace has meaning

print(4 + 5 # Incomplete Error: always close parentheses/quotes

36SLIDO: #254501

Execution Errors are Runtime Errors
After Python tokenizes and structures the code, the interpreter runs
through the control flow of the program line-by-line.

If an error occurs as the code is being executed, it's called a runtime error.
Everything that happened before that error will execute just fine, but
everything afterwards will not run.

Runtime errors have many different names in Python. Each name says
something about what kind of error occurred, so reading the name and
text can give you additional information about what went wrong.

37SLIDO: #254501

Examples of Runtime Errors
print(Hello) # NameError: used a missing variable

print("2" + 3) # TypeError: illegal operation on types

x = 5 / 0 # ZeroDivisionError: can't divide by zero

We'll see more types of runtime errors as we learn more Python syntax.

SLIDO: #254501 38

Other Errors are Logical Errors
If we manage to run Python code completely, does that mean it's correct?

Not necessarily! Logical errors can occur if code runs but produces a result
that was not what the user intended. The computer can't catch logical
errors because the computer doesn't know what we intend to do.

To catch logical errors, you usually need to test your code. We'll do this
mainly with assert statements.

39SLIDO: #254501

Examples of Logical Errors
print("2 + 2 = ", 5) # no error message, but wrong!

def double(x):

return x + 2 # adding instead of multiplying

assert(double(3) == 6) # 6 is the intended result

40SLIDO: #254501

assert Statements Check Correctness
An assert statement takes a Boolean expression. If the expression
evaluates to True, the statement does nothing. If it evaluates to False,
the program crashes.

We use assert statements to check for logical errors by testing whether
the output of a function call is equal to what we expect it to be. If the
result is not correct, you get an AssertionError.

assert(findAverage(20, 4) == 5)

41SLIDO: #254501

Activity: Predict the Error Type
Let's test your knowledge of error types with another Kahoot!

Given a line of code, predict whether it will result in a Syntax Error, Runtime
Error, Logical Error, or no error.

If you aren't sure, try to think about whether the problem will occur during
syntax parsing/structuring, or execution, or if it will run properly but still have a
problem.

Join at kahoot.it

42

https://kahoot.it/

Learning Goals
Use logical operators on Booleans to compute whether an expression is True or
False

Use conditionals when reading and writing algorithms that make choices based
on data

Use nesting of conditionals and function definitions to create complex control
flow

Recognize the different types of errors that can be raised when you run Python
code

43

