
#2-3: Loops
CS SCHOLARS – PROGRAMMING

Learning Goals
Use for loops when reading and writing algorithms to repeat actions a
specified number of times

Identify start values, continuing conditions, and update actions for loop
control variables

Use while loops when reading and writing algorithms to repeat actions
where the update action or continuing condition is complicated

2

Repeating Actions is Annoying
Let's write a program that prints out the numbers from 1 to 10. Up to now, that would look like:

print(1)

print(2)

print(3)

print(4)

print(5)

print(6)

print(7)

print(8)

print(9)

print(10)

3

Loops Repeat Actions Automatically
A loop is a control structure that lets us repeat actions so that we don't
need to write out similar code over and over again.

Loops are generally most powerful if we can find a pattern between the
repeated items. Noticing patterns lets us separate out the parts of the
action that are the same each time from the parts that are different.

In printing the numbers from 1 to 10, the part that is the same is the
action of printing. The part that is different is the number that is printed.

4

For Loops

5

For Loops Implement Repeated Actions
When the pattern represented by a loop is straightforward, we can use a simple
control structure to achieve the pattern in a small amount of code.

A for loop over a range tells the program exactly how many times to repeat an
action. The loop body represents the action taken in each step of the pattern.

for <loopVariable> in range(<numberActions>):

<loopBody>

The for loop creates a new variable – loopVariable – that is repeatedly set to the
numbers from 0 to numberActions-1. If we use the loop variable in the loop
body, we can create different behavior across iterations!

6

Printing 1 to 10
Let's say we want to print the numbers from 1 to 10. There are ten actions, so we could
start the loop as:

for number in range(10):

For each repetition (iteration), we want to print a number. But we can't print the
number held in the variable – that starts at 0, not 1. Let's print number + 1 instead.

for number in range(10):

print(number + 1)

7

Activity: Predict the Result
You do: here's a slightly different for loop. What do you think it will print?

for x in range(5):

print(x, x % 3)

Hint: recall that % is the modulo (remainder) operator

8

Loop Control Variables

9

Use Loop Control Variables to Design Algorithms
Now that we know the basics of how loops work, we want to write for
loops that produce specific repeated actions.

First, we need to identify which parts of the repeated action must change
in each iteration. This changing part is the loop control variable(s), which
is updated in the loop body.

We can usually represent this changing part as a combination of a start
value, an update action, and a continuing condition. All three need to be
coordinated for the loop to work correctly.

10

Example: Print 1-to-10 loop control variable
In our prior example, we used a loop control variable like this:
◦ Start value: number = 0
◦ Continuing condition: number < 10
◦ Update action: number = number + 1

This worked because range defaults to using 0 for the start and +1 for the
update action. But we can use non-default values for range as well! For
example, we could have written the loop such that we could print the number
directly:
◦ Start value: number = 1
◦ Continuing condition: number <= 10
◦ Update action: number = number + 1

11

Range with Two Arguments
We can also give range two arguments, a start and an end value. The loop
control variable begins with the start value, is incremented by 1 each
iteration, and goes up to but not including the end value.

The following code would generate the numbers 3, 4, 5, 6, and 7.

for i in range(3, 8):

print(i)

12

Range with Three Arguments
If we use three arguments in the range function, the last argument is the step of
the range (how much the loop control variable should change in each iteration).

The following example would print the even numbers from 1 to 10, because it
updates i by 2 each iteration.

for i in range(2, 11, 2):

print(i)

13

Range Examples
For our original example, we could have written:

for number in range(1, 11): # step is default +1

print(number)

What if we wanted to count backwards instead? The loop control variable is the same,
but its components change. We start at 10, update by subtracting 1, and continue while
number >= 1 (number > 0).

for number in range(10, 0, -1):

print(number)

14

Activity: Print Multiple Numbers
You do: your task is to print the multiples of 5 from 50 to 100.

What is your loop control variable? What is its start value, continuing
condition, and update action?

Once you've determined what these values are, use them to write a short
program that does this task.

15

For Loops Manage the Loop Control Variable
The for loop manages the loop control variable for you entirely. That's useful, but
it also means you can't update it in the loop body.

If you try to change the loop control variable, it will revert back to the next
expected value on the following iteration. This happens because of the range.

for i in range(10):

print(i)

i = i + 2 # should skip two ahead, but does not

16

Loops in Algorithms

17

Implement Algorithms by Changing Loop Body
Suppose we want to add the numbers from
1 to 10 instead of printing them.

We need to keep track of two different
numbers:

◦ the current number we're adding

◦ the current sum

Both numbers are represented as variables
(as they represent data stored over time),
but only one is a loop control variable.

result = 0

for num in range(1, 11):

result = result + num

print(result)

18

Which is the loop control variable?

Tracing Loops
Sometimes it gets difficult to understand
what a program is doing when that
program uses loops. It can be helpful to
manually trace through the values in the
variables at each step of the code,
including each iteration of the loop.

result = 0

for num in range(1, 8):

result = result + num

print(result)

step result num

pre-loop 0 --

iteration 1 1 1

iteration 2 3 2

iteration 3 6 3

iteration 4 10 4

iteration 5 15 5

iteration 6 21 6

iteration 7 28 7

post-loop 28 7

19

Identifying Complicated Patterns
Figuring out what the loop control variable isn't always easy! Sometimes you need to think for a
while to decide how to split up an intended result into repeated steps.

Example: how would you create a program that produces the pattern "10-11-12-13-"?

What is repeated? The numbers followed by dashes. "10-", "11-", "12-", and "13-". Add
them each to a result one at a time.

s = ""

for i in range(10, 14):

s = s + str(i) + "-"

print(s)

20

Activity: Print Number pyramid
You do: write code that takes a variable n and
produces a number pyramid with n lines. A
number pyramid of 4 lines looks like this:

11

2**2

3****3

4******4

If we added a 5th line, it would be:

5********5

Hint: start by figuring out a proper loop
control variable for the pattern.

Bonus: if you finish early, try to figure out how
to center the pyramid so it looks like:

11

2**2

3****3

4******4

5********5

21

Limitations of For Loops
For loops are excellent for standard patterns, and you'll use them a lot!
But they don't work for every possible repetition.

What if you have a continuing condition that isn't represented by a simple
comparison? What if you have an update action that isn't adding or
subtracting an integer number?

In these cases, we need to use while loops instead!

22

While Loops

23

While Loops Repeat While a Condition is True
A while loop is a type of loop that keeps repeating only while a certain condition is met. It uses
the syntax:

while <booleanExpression>:

<loopBody>

The while loop checks the Boolean expression, and if it is True, it runs the loop body. Then it
checks the Boolean expression again, and if it is still True, it runs the loop body again... etc.

When the while loop finds that the Boolean expression is False, it skips the loop body the
same way an if statement would skip its body.

24

Conditions Must Eventually Become False
Unlike if statements, the condition in a while loop must eventually become False. If this
doesn't happen, the while loop will keep going forever!

The best way to make the condition change from True to False is to set up a reasonable loop
control variable. If we set up the parts of a loop control variable so that the continuing condition
will eventually become False, the loop will eventually stop.

i = 1

while i <= 10:

print(i)

i = i + 1

print("done")

25

Note a core difference from for loops – we
must define the start value and run the
update action ourselves. The while loop
doesn't manage the loop control variable!

Infinite Loops Run Forever
What happens if we don't ensure that the condition eventually becomes False? The while loop
will just keep looping forever! This is called an infinite loop.

i = 1

while i > 0:

print(i)

i = i + 1

If you get stuck in an infinite loop, press the button that looks like a stop sign above the editor (or
refresh the page in repl.it) to make the program stop. Then investigate your program to figure out
why the variable never makes the condition False. Printing out the variable that changes can
help pinpoint the issue.

26

You Do: Trace the Program
You do: if we slightly change the code from the previous program, what
happens to the program?

i = 1

while i <= 10:

i = i + 1 # moved up one line

print(i)

print("done")

27

For Loops vs While Loops
If you can write a (numeric) loop in a for loop,
you can also write it in a while loop. To sum the
numbers from 0 to n in a for loop, we'd write
the following:

result = 0

for i in range(n + 1):

result = result + i

print(result)

To sum the numbers from 0 to n in a while
loop, we'd instead use the following. Note the
extra lines to set up and update the loop
control variables

i = 0

result = 0

while i <= n:

result = result + i

i = i + 1

print(result)

28

Purpose of While Loops
There's not much point in writing a while loop that could be a for loop. But some
while loops can only be while loops!

For example, what if we wanted to print all the powers of two from 1 to 100?
We can generate all the powers by multiplying each new power by 2 again.
◦ Start value: n = 1
◦ Continuing condition: n <= 100
◦ Update action: n = n * 2

We can't set up a range with an update action that multiplies! But we can write
a while loop that works that way.

29

Example: Powers of Two
Here's our loop that prints the powers of two:

n = 1

while n <= 100:

print(n)

n = n * 2

30

Example: Number Digits
While loops are also useful if you need to repeatedly divide a number.

For example – how can we tell how many digits are in an integer? Each digit
represents a power of 10; repeatedly divide the integer by 10 until you can't
divide it anymore (when it reaches 0).

count = 0
n = 2022
while n > 0:

count = count + 1
n = n // 10

print(count)

31

Activity: Trace a While Loop
You do: What will the following
code print?

Try using a table to manually trace
through the code!

x = 16

y = 1

num = 0

while y < x:

num += 1

y = y * num

print(num, y)

32

Learning Goals
Use for loops when reading and writing algorithms to repeat actions a
specified number of times

Identify start values, continuing conditions, and update actions for loop
control variables

Use while loops when reading and writing algorithms to repeat actions
where the update action or continuing condition is complicated

33

