
Advanced Computer
Science #2: Concurrency
CS SCHOLARS – PROGRAMMING

Learning Goals
Define and understand the differences between the following types of concurrency: circuit-level
concurrency, multitasking, multiprocessing, and distributed computing

Create concurrency trees to increase the efficiency of complex operations by executing sub-
operations at the same time

Recognize certain problems that arise while multiprocessing, such as difficulty of design and
deadlock

Create pipelines to increase the efficiency of repeated operations by executing sub-steps at the
same time

Use the MapReduce pattern to design and code parallelized algorithms for distributed computing

2

Moore's Law: Computers Keep Getting Faster
You've probably noticed that the computer you
use now is much faster than the computer you
used ten years ago. That's because of a
technology principle known as Moore's Law.

Moore's Law basically states that the power of
a computer doubles every two years. If you buy
a computer designed in 2020, it should be
twice as powerful as a computer made in 2018.

Note: Moore's Law is an observation, not an
actual law of nature. But how does it work?

3

Transistors Provide Electronic Switching
Recall the lecture on gates and circuits. How does the computer send data to
different circuits for different tasks?

This is accomplished using a transistor, a small device that makes it possible to
switch electric signals. In other words, adding a transistor to a circuit gives the
computer a choice between two different actions. Gates are partially made out
of transistors.

When we make transistors smaller, we can decrease the distance between them
(reducing communication time) and increase the number that fit on a chip.
Smaller transistors also use less current. This makes the computer faster.

4

Moore's Law: Double the Transistors
A more precise statement of Moore's Law is that the number of transistors on a
computer chip will double every two years. This provides the increase in
computing power, and the speed-up.

Originally, engineers were able to double the number of transistors by making
them smaller every year, to fit twice as many transistors on a single computer
chip. But around 2010 it became physically impossible to make the transistors
smaller at such a rapid rate (due to electronic leakage).

Now engineers attempt to follow Moore's Law by using parallelization instead. In
other words, your computer may contain multiple processing units, and may run
more than one block of instructions at the same time.

5

Levels of Concurrency

6

Concurrency and Parallelization
In general, when we refer to the term concurrency, we mean that multiple
programs are running at exactly the same time.

We will also refer to parallelization as the process of taking an algorithm
and breaking it up so that it can run across multiple concurrent processes
at the same time.

We'll start by discussing four different levels at which concurrency occurs.
Then we'll discuss broad approaches for implementing parallel algorithms.

7

Four Levels of Concurrency
The four levels of concurrency are:

Circuit-Level Concurrency: concurrent actions on a single CPU

Multitasking: seemingly-concurrent programs on a single CPU

Multiprocessing: concurrent programs across multiple CPUs

Distributed Computing: concurrent programs across multiple computers

8

A CPU Manages Computation
A CPU (or Central Processing Unit) is
the part of a computer's hardware that
actually runs the actions taken by a
program. It's composed of a large
number of circuits.

The CPU is made up of several parts. It
has a control unit, which maps the
individual steps taken by a program to
specific circuits. It also has many
registers, which store information and
act as temporary memory.

9

CPUs Have Many Logic Units
For our purpose, the most
interesting part is the logic units.
These are a set of circuits that can
perform basic arithmetic operations
(like addition or multiplication).

Importantly, the CPU has many
duplicates of these- it might have
hundreds of logic units that all
perform addition.

10

1: Circuit-Level Concurrency
The first level of concurrency happens within a single CPU, or core.
Because the CPU has many arithmetic units, it can break up complex
mathematical operations so that subparts of the operation run on separate
logic units at the same time.

For example, if a computer needs to compute (2 + 3) * (5 + 7), it can send
(2 + 3) and (5 + 7) to two different addition units simultaneously. Once it
gets the results, it can then send them to the multiplication unit. This only
takes two time steps, instead of three.

11

Concurrency Trees
A concurrency tree is a tree that shows how a
complex operation can be broken down into the
fewest possible time steps.

Actions which occur simultaneously are written as
nodes at the same level of the tree. Nodes are on
the same level when they are the same distance
from the root.

The total number of steps is the number of non-leaf
nodes in the tree. This example tree has three total
steps.

The number of time-steps is the number of non-leaf
levels in the tree. This example tree has two time-
steps.

12

2+3

2 3 5 7

5+7

(2+3) * (5+7)

time-step 2

time-step 1

Example Concurrency Tree
For example, let's make a concurrency tree for

(a*b + c*(d/4)) * (g + f*h)

In the first time-step, we can compute a*b, d/4, and
f*h.

The next time-step contains the operations that
required those computations to be done already –
c*(d/4) and g + f*h.

In general, the operations at each level could not be
done any earlier in the process.

This tree has seven total steps and four time-steps.

13

a*b

c*(d/4)

a*b + c*(d/4)

f*h

g + f*h

(a*b + c*(d/4)) * (g + f*h)

a b c d g f h4

d/4

Activity: Count Equation Steps
Consider the following equation:

((a*b + 1) - a) + ((c/2) * (d*e + f))

How many total steps does it take to compute this equation?

How many time-steps does it take to compute this equation?

Hint: If you aren't sure, try drawing a concurrency tree!

14

Activity Solution
Total steps: 8

Time steps: 4
◦ a*b, c/2, d*e

◦ a*b + 1, d*e + f

◦ (a*b + 1) - a, (c/2) * (d*e + f)

◦ ((a*b + 1) - a) + ((c/2) * (d*e + f))

15

2: Multitasking
The second level of concurrency is multitasking.

This level is very different from the others in that it doesn't actually run
multiple actions at the same time. Instead, it creates the appearance of
concurrent actions.

16

CPU Schedulers Arrange Programs
Multitasking is accomplished by a part of the operating system called a
scheduler. This is a component that decides which program action will
happen next in the CPU.

When your computer is running multiple applications at the same time –
like your browser, and a word editor, and Pyzo – the scheduler decides
which program gets to use the CPU at any given point.

17

Multitasking with a Scheduler
When multiple applications are running at the same time, the scheduler can make them
seem to run at the same time by breaking each application's process into steps, then
alternating between the steps rapidly.

If this alternation happens quickly enough, it looks like true concurrency to the user,
even though only one process is running at any given point in time.

18

time

Process 1:

Process 2:

run

step1

run

step1

run

step 2

run

step 2

run

step3

Schedulers Can Choose Any Order
When two (or more) processes are running
at the same time, the steps don't need to
alternate perfectly.

The scheduler may choose to run several
steps of one process, then switch to one
step of another, then run all the steps of a
third. It might even choose to put a process
on hold for a long time, if it isn't a priority.

In general, the scheduler chooses which
order to run the steps in to maximize
throughput for the user. Throughput is the
amount of work a computer can do during
a set length of time.

19

run

step1

run run

step1 step 2

run run

step1 step 2

time

Process 1:

Process 2:

Process 3:

Your Computer Multitasks
Your computer uses multitasking to manage all
of the applications you run, as well as the
background processes needed to make your
operating system work.

You can see all the applications your
computer's scheduler is managing by going to
your process manager (Task Manager on
Windows, Activity Monitor on Macs). You can
even see how much time each process gets on
the CPU!

You do: open your process manager now to see
how much CPU time each application takes

20

3: Multiprocessing
The third level of concurrency, multiprocessing, can run multiple
applications at the exact same time on a single computer.

To make this possible, we put multiple CPUs inside a single computer, then
run different applications on different CPUs at the same time.

By multiplying the number of actions we can run at a point in time, we
multiply the speed of the computer.

21

Multiple Processor vs. Multi-Core
Technically there are two ways to put several CPUs
into a single machine.

The first is to insert more than one processor chip
into the computer. This is called multiple processors.

The second is to put multiple 'cores' on a single chip.
Each core can manage its own set of actions. This is
called multi-core.

There are slight differences between these two
approaches in terms of how quickly the CPUs can
work together and how they access memory. For this
class, we'll treat them as the same.

22

Multiple
Processors

Multi-Core

Scheduling with Multiprocessing
When we use multiple cores and multiprocessing, we can run our
applications simultaneously by assigning them to different cores.

Each core has its own scheduler, so they can work independently.

23

time

Process 3:
[on Core 1]

Process 9:
[on Core 2]

run

step3

run

run

step1

step1

run

run

step 2

step 2

Simplified Scheduling
Here's a simplified visualization of scheduling with multiprocessing, where
we condense all of the steps of an application into one block.

24

Microsoft Word

Firefox

Pyzo

Zoom

Core 1

Core 2

Core 3

Core 4

Multiprocessing and Multitasking
The number of cores we have on a single computer is usually still limited. Most
modern computers use somewhere between 2-8 cores. If you run more than 2-8
applications at the same time, the cores use multitasking to make them appear
to run concurrently.

You can check how many cores your own computer has! If you're on Windows, go
back to the process manager and switch to the tab 'Performance'. If you're on a
Mac, go to About This Mac > System Report > Hardware.

You do: look up how many cores your computer has!

25

Scheduling with Multiprocessing and Multitasking
Here's a simplified view of what scheduling might look like when we
combine multiprocessing with multitasking.

26

Microsoft Word

Firefox

Pyzo

Zoom

Core 1

Core 2

Core 3

Core 4

Microsoft Word Microsoft WordPPT PPT PPT

Firefox Firefox Firefox Firefox

4: Distributed Computing
The final level of concurrency, distributed computing, goes beyond using a
single machine.

If we have access to several computers (each with its own set of CPUs), we
can network them together and use them all to perform advanced
computations by assigning different subtasks to different computers.

By multiplying the number of computers that are working on a single
problem, we can multiply the speed of a difficult computation.

27

Scheduling with Distributed Computing
Each computer in the network can take a single task, break it up into further
subtasks, and assign those subtasks to its cores. This makes it possible for us to
attempt to solve problems which would take a long time to solve on a single
processor.

28

Core 1

Core 2

Core 3

Core 4

Subtask 1-1

Subtask 1-2

Subtask 1-3

Subtask 1-4

Core 1

Core 2

Core 3

Core 4

Subtask 2-1

Subtask 2-2

Subtask 2-3

Subtask 2-4

Core 1

Core 2

Core 3

Core 4

Subtask 3-1

Subtask 3-2

Subtask 3-3

Subtask 3-4

Core 1

Core 2

Core 3

Core 4

Subtask 4-1

Subtask 4-2

Subtask 4-3

Subtask 4-4

Task 1

Task 2

Task 3

Task 4

Companies Use Distributed Computing
Distributed computing is used by big tech
companies (like Google and Amazon) both to
manage thousands of customers
simultaneously and to process complex actions
quickly.

This is where the term 'server farm' comes
from- these companies will construct large
buildings full of thousands of computers which
are all networked together and ready to
process information.

A supercomputer is very similar to distributed
computing. It's a computer with a huge number
of processors connected together. The main
difference is that all the processors are located
in the same place.

29

Distributed Computing Must Be Fault Tolerant
When using distributed computing, it's very important that algorithms are
designed to be fault tolerant.

The probability that a computer randomly crashes while running a program is low
(maybe 1 in 10,000). But server farms regularly run far more than 10,000
computers at the same time.

Algorithms that run on distributed systems must be designed to have checks in
place to make sure that no work is left unfinished. Typically, storage is also
backed up on multiple machines, to make sure no data is lost if a single machine
goes down.

30

Difficulties in Parallelization

31

Designing Concurrent Algorithms
Now let's discuss how design algorithms so that they can run concurrently.
This is often referred to as parallel programming.

We won't actually write parallelized code in this lecture (apart from a bit of
MapReduce code where the parallelization is provided for us), but we will
discuss common problems and algorithms in the field.

32

Difficulty of Design
Parallel programming is more difficult than regular programming because
it forces us to think in new ways and adds new constraints to the problems
we try to solve.

First, we must figure out how to design algorithms that can be split across
multiple processes. This varies greatly in difficulty based on the problem
we're solving!

33

Making Merge Sort Concurrent
Let's start with an easy
example – the algorithm
Merge Sort, which sorts a
list by splitting the list in
half, recursively sorting
each half of the list, and
then merging the two
halves.

This adapts nicely to
concurrency; instead of
running mergeSort on the
two halves of the lists
sequentially, it runs them
concurrently. Then it
sends the results back to a
single core to be merged.

34

38 27 43 3 9 82 10 15

38 27 43 3 9 82 10 15

43 338 27 10 159 82

3 4327 38 10 159 82

3 27 38 43 9 10 15 82

3 9 10 15 27 38 43 82

Making Loops Concurrent
It's easy to make recursive problems like merge sort concurrent if they make multiple recursive
calls. It's harder to think concurrently when writing programs that use loops.

We could plan to identify all the iterations of the loop and run each iteration on a separate core.
But what if the results of all the iterations need to be combined? And what if each iteration
depends on the result of the previous one? This gets even harder if we don't know how many
iterations there will be overall, like when we use a while loop.

A bit later, we'll talk about how to use algorithmic plans to address these difficulties.

35

def search(lst, target):
for item in lst:

if item == target:
return True

return False

def getSum(lst):
sum = 0
for item in lst:

sum = sum + item
return sum

def powersOf2(n):
i = 2
while i < n:

print(i)
i = i * 2

Sharing Resources
The next difficulty of writing parallel programs comes from the fact that
multiple cores need to share individual resources on a single machine.

For example, two different programs might want to access the same part
of the computer's memory at the same time. They might both want to
update the computer's screen or play audio over the computer's speaker.

36

Locking and Yielding Resources
We can't just let two programs update a resource simultaneously- this will result in garbled
results that the user can't understand. For example, if one program wants to print "Hello World"
to the console, and the other wants to print "Good Morning", the user might end up seeing
"Hello Good World Morning".

To avoid this situation, programs put a lock on a shared resource when they access it. While a
resource is locked, no other program can access it.

Then, when a program is done with a resource, it yields that resource back to the computer
system, where it can be sent to the next program that wants it.

Sidebar: if we want two programs to use a resource simultaneously, we usually use a third
program to combine the actions together, and that third program is the one that accesses the
resource. For example, if you listen to music while watching a lecture recording, your computer
mixes the two audio tracks together and plays the combined result.

37

Deadlock Stalls the System
In general, this system of locking and yielding
fixes most cases where programs might try to
use a resource at the same time. But there are
some situations where it can cause trouble.

Two programs, Youtube and Zoom, both want
to access the screen and audio. They put their
requests in at the same time, and the computer
gives the screen to Youtube and the audio to
Zoom.

Both programs will lock the resource they have,
then wait for the next resource to become
available. Since they're waiting on each other,
they'll wait forever! This is known as deadlock.

38

Deadlock Definition
In general, we say that deadlock occurs
when two or more processes are all
waiting for some resource that other
processes in the group already hold.
This will cause all processes to wait
forever without proceeding.

Deadlock can happen in real life! For
example, if enough cars edge into
traffic at four-way intersections, the
intersections can get locked such that
no one can move forward.

39

Fix Deadlock With Ordered Resources
In order to fix deadlock, impose an order
that programs always follow when
requesting resources.

For example, maybe Youtube and Zoom
must receive the screen lock before they
can request the audio. When Youtube gets
the screen, it can make a request for the
audio while Zoom waits for its turn.

When Youtube is done, it will yield its
resources and Zoom will be able to access
them.

40

Activity: Dining Philosophers
Another example of deadlock occurs in the
Dining Philosophers problem.

Several philosophers sit down at a circular
table to eat. Each thinks for a while, then
picks up their left fork, then picks up their
right fork, then eats a bit. Then they put
down the forks to think some more, then
eat some more, etc.

You do: How can these philosophers get
into deadlock? How can we solve that
deadlock?

41

Activity Solution
Problem: if every philosopher picks up their left fork, no one will be able
to eat.

Solution: number the forks. Every philosopher picks up the fork with the
earlier number first. For most philosophers this will still be the left fork,
but for one (the last philosopher) it will be the right.

42

Communication in
Concurrency

43

Some Processes Need to Communicate
We can't always guarantee that the processes running concurrently on a
computer are independent. Sometimes a single program is split into
multiple tasks that run concurrently instead.

These tasks might need to share partial results as they run. They'll need a
way to communicate with each other.

44

Processes Pass Messages to Share Data
Data is shared between processes by passing messages. When one task has
found a result, it may send it to the other process before continuing its own
work.

If one process depends on the result of another, it may need to halt its work
while it waits on the message to be delivered. This can slow down the
concurrency, as it takes time for data to be sent between cores or computers.

Example: consider merge sort. Once a core has finished splitting it will need to
wait for the result of the alternate core to merge the two halves of the list
together.

45

Pipelining and MapReduce
Writing algorithms that can pass messages is tricky. We'll discuss two
approaches that make it easier: pipelining and MapReduce.

The core idea behind pipelining is that you can parallelize an algorithm by
splitting up the algorithm into a series of consecutive steps.

The core idea behind MapReduce is that you can parallelize an algorithm
by splitting up the data into many many small parts.

46

Message Passing Example: Line Cooking
Let's introduce our two algorithms through the lens of line cooking. To make a pizza, we must:

1. Flatten the dough

2. Apply the toppings

3. Bake in the oven

If we need to make four pizzas without parallelization, it will look like this:

This takes 12 total steps. Can parallelization do better?

47

Pipelining

48

Pipelining Definition
One algorithmic process that simplifies parallel
algorithm design is pipelining. In this process,
you start with a task that repeats the same
procedure over many different pieces of data.

The steps of the procedure are split across
different cores. Each core is like a single worker
on an assembly line; when it is given a piece of
data it executes the step, then passes the result
to the next core.

Just like in an assembly line, the cores can run
multiple pieces of data simultaneously by
starting new computations while the others are
still in progress.

49

Pizza Pipelining –
3 workers, 1 oven, 6 time-steps

Worker 1:

Worker 2:

Worker 3:

50

Each worker has one task.
#1 flattens dough, #2
arranges toppings, #3
bakes in the oven.
There are still 12 total
steps, but there are only 6
time-steps.

Rules for Pipelining
When designing a pipeline, it's important to remember that each step
relies on the step that came before it. You cannot start applying toppings
until the dough has been flattened.

Additionally, the length of time that the pipelining process takes depends
on the longest step. If flattening dough and applying toppings are fast
(maybe 5 minutes each) but cooking in the oven is slow (maybe 20
minutes), the whole process will have to wait on the slowest step to
conclude.

51

Benefits of Pipelining
Pipelining is most useful when the number of shared resources is limited.
For example, in pizza-making we may have only one oven; using pipelining
ensures that we are constantly making use of the oven without wasting
time.

Pipelining is also useful for tasks that require setup time, but then can run
many times without further setup - maybe for flattening, the cook only
has to clean the counter and flour it once.

52

Another Example: Laundry Without Pipelining
You probably already use pipelining when you do laundry. Let's look at an example
where we assume you need to wash, dry, and fold several loads of laundry. Washing [W]
takes 30 minutes; drying [D] takes 45; folding [F] takes 15.

If you don't use pipelining and wait until a load of laundry is folded before starting the
next one, doing four loads of laundry takes six hours.

53

W D F W D F W D F W D F

0 30 60 90 120 150 180 210 240 270 300 330 360min

Example: Laundry With Pipelining
To use pipelining, split the three steps of the laundry process across three workers: the washer, dryer,
and folder. Each worker has a lock on the shared resource.

With pipelining, four loads of laundry only takes 3 hours and 45 minutes. Much faster!

[In reality, you alternate between these tasks and the machines do the work; you just start the
machines. So the machines are the workers in this scenario.]

54

W

D

F

W

D

F

W

D

F

W

D

F

0 30 60 90 120 150 180 210 240 270 300 330 360min

Activity: Design a Pipeline
The process of writing a thank-you card has three sequential steps: Writing the note [10min], Adding
the address to the envelope [6min], and Stuffing the envelope [6min]. Because you hate writing
thank-you cards, you've decided to hire two helpers (your younger siblings) to help with the work.

You need to write all the notes yourself, to make sure they're personalized, but you can outsource the
other tasks to the helpers once the card has been written

By yourself, you can write 2 full thank-you cards in an hour (plus part of a third). If you use pipelining
and the three workers (yourself + two helpers), how many completed thank-you cards can you make
in an hour?

Hint: try drawing this out the way we drew out the washer/dryer/folder example, but with
writer/adder/stuffer as the three roles.

55

Activity Solution
Answer: four letters

It takes 22min to finish a single letter, and you start writing a new letter every ten
minutes. Because writing is the longest task, the other two tasks will need to wait on it.

Letter 1: 00:00-00:22

Letter 2: 00:10-00:32

Letter 3: 00:20-00:42

Letter 4: 00:30-00:52

Letter 5 is partially completed at the hour mark (00:40-00:62)

56

Pipelining in Computer Science
Pipelining is used to increase the efficiency of certain operations in
computer science, like matrix multiplication. It's also used in the Fetch-
Execute cycle, which is how the CPU processes instructions.

Pipelining is often combined with multiprocessing to split the operations
being performed across multiple cores. This helps ensure that no core goes
unused.

57

MapReduce

58

MapReduce Organizes Concurrency
Another popular algorithm for organizing parallelized programs is called
MapReduce. Instead of breaking up a procedure's steps across different
cores, this algorithm takes a large data set and breaks up the data itself
across the cores.

This is a really effective approach if you have a lot of cores to work with
(like in distributed computing). It's also a great approach for any problem
over big data – that is, giant data sets that take far too long to process
sequentially.

59

MapReduce - 4 workers, 4 Ovens, 3 time-steps
Worker 1:

Worker 2:

Worker 3:

Worker 4:

60

Each worker
makes one pizza
instead of doing
one task
repeatedly.

If we have infinite
ovens and infinite
workers, we can
make as many
pizzas as we want
in just 3
time-steps!

Making MapReduce Algorithms
The MapReduce approach is simple enough that we can discuss how to build
algorithms that actually use it.

A MapReduce algorithm is composed of three parts.

The mapper takes a piece of data, processes it, and finds a partial result

The reducer takes a set of results and combines them together

The manager moves data through the process and outputs the final result
◦ Splits up data, sends to mappers, get results back
◦ Combines results together, sends to the reducer
◦ Gets the final result, outputs it

61

MapReduce Example: Search – Mapper
Let's say we want to search a book for a
specific word. How can we split up this
task?

First, the manager divides the book into
many small parts- maybe one page per
part. It sends each page to a different
computer.

Each computer runs its copy of the mapper
on its page. It returns True if it finds the
result, and False otherwise. These results
are sent back to the manager.

62

Manager

Computer 1

Computer 2 Computer 3

Computer 4

mapper(data1)

mapper(data2) mapper(data3)

mapper(data4)

MapReduce Examples: Search – Reducer
Once all the mappers have returned their
results the manager puts them all in a list
and sends that list to the reducer(s). The
reducer combines the results together in
some way.

There can be more than one reducer if
there are lots of results to combine or if
we're checking multiple things (like
searching for more than one word). For
now, we'll just use one.

Our reducer will check all of the results and
send True back to the manager if any of
them are True.

63

Manager

Computer 1

reducer(result)

[F
al

se
,

Fa
ls

e,
 T

ru
e,

 F
al

se
]

Tru
e

Coding MapReduce
We've provided a version of the MapReduce
manager on the course website that uses
multiprocessing to run the algorithm on several
cores at the same time.

That makes implementing MapReduce easy- we just
need to write code for the mapper and the reducer.

It's hard to tell that the system uses multiprocessing,
but we can print out partial work to show what's
happening. You need to end the process (by clicking
the 'Terminate and restart the interpreter' button) to
see what was printed in the individual calls.

Assume the page is in a file
def mapper(filename, target):
don't worry about reading/cleaning files
yet – we'll get there soon!
text = cleanFile(readFile(filename))
words = text.split(" ")
for i in range(len(words)):
word = words[i]
if word == target:
print("file", f, "found on word #", i)
return True

print("file", f, didn't find it")
return False

If the word is on any page, return True
def reducer(lst):

print("reducer is checking", lst)
for pageResult in lst:

if pageResult == True:
return True

return False

64

MapReduce Efficiency
MapReduce can process huge
data sets and get results quickly
because it takes a list of length N
and breaks it up into constant-
size parts.

The core assumption is that we
have enough computers to make
the data pieces really small. If we
process 1 million data points with
100,000 computers, each
computer only needs to handle
100 data points.

1

100

10000

1000000

100000000

1E+10

1E+12

1000 1000000 1000000000 1E+12

Runtime of Search with N={1000,1M,1B,1T} items

LinearSearch MapReduceSearch

65

Another Example: Counting
What if we instead wanted to count the number of words across all of Wikipedia?

First, the manager breaks up the data- maybe each Wikipedia entry goes to a computer.

The mapper can take a single page and count all the words on it.

The manager takes all those counts and puts them in a list.

The reducer takes the list of numbers and returns their sum.

66

Learning Goals
Define and understand the differences between the following types of concurrency: circuit-level
concurrency, multitasking, multiprocessing, and distributed computing

Create concurrency trees to increase the efficiency of complex operations by executing sub-
operations at the same time

Recognize certain problems that arise while multiprocessing, such as difficulty of design and
deadlock

Create pipelines to increase the efficiency of repeated operations by executing sub-steps at the same
time

Use the MapReduce pattern to design and code parallelized algorithms for distributed computing

67

