
#3-1: Nesting and Top-
Down Design
CS SCHOLARS – PROGRAMMING

Learning Goals
Use nesting of statements to create complex control flow

Implement and use helper functions in code to break up large problems
into solvable subtasks

Nesting Control Structures

Nesting Control Structures
We showed previously how to nest conditionals inside conditionals, and
we've already nested both conditionals and loops inside functions.

We can use this same approach to nest loops in loops, or conditionals in
loops, or loops in conditionals! We can also nest multiple times when
needed, like putting a conditional in a loop in a function definition.

By composing these control structures in different ways, we can create
new and complex behavior and can implement any algorithm we want!

Combining Conditionals and Loops
First, you may want to use conditionals in loops to change
behavior in different iterations based on some property.

For example, let's make ascii art. Write code to produce
the following printed string:

x-x-x
-o-o-
x-x-x
-o-o-
x-x-x

The loop will iterate over the rows that are printed. The
program decides whether to print the x line or the o line
based on the value of the loop control variable.

If it's even (0, 2, and 4) print x; if it's odd (1 and 3) print o.

for row in range(5):

if row % 2 == 0:

print("x-x-x")

else:

print("-o-o-")

6

Exiting Loops Early
We can also use conditionals in loops to exit
loops early, which can be helpful in cases
when you aren't sure when a loop should end.

If we return inside a loop, it immediately exits
the function- no further iterations will run.

For example, we can determine whether or
not a number is prime using a loop over all of
the number's possible factors. Exit early if you
find a factor.

Make sure to also check that the number is
positive and not 1!

def isPrime(num):

if num < 2:

return False

for factor in range(2, num):

if num % factor == 0:

return False

return True

7

Activity: countFactors
You do: write a program countFactors that takes a number x and
returns the number of unique factors between [1, x] that the number has.

Hint: you can start with the template from isPrime. What needs to
change so that you can count factors instead of checking if there's at least
one?

Nesting Loops
We can also nest loops inside of loops! We mostly do this with for loops, and
mostly when we want to loop over multiple dimensions.

for <loopVar1> in range(<endNum1>):

for <loopVar2> in range(<endNum2>):

<bothLoopsBody>

<justOuterLoopBody>

In nested loops, the inner loop is repeated every time the outer loop takes a
step.

9

Example: Coordinate Plane with Nested Loops
Suppose we want to print all the coordinates on a plane from (0,0) to (4,3).

for x in range(5):

for y in range(4):

print("(", x, ",", y, ")")

Note that every iteration of y happens anew in each iteration of x.

10

Tracing Nested Loops
The following code prints out a 3x2
multiplication table. We can use
code tracing to find the values at
each iteration of the loops.

for x in range(1, 4):

for y in range(1, 3):

print(x, "*", y, "=", x * y)

Iteration x y x*y

1 1 1 1

2 1 2 2

3 2 1 2

4 2 2 4

5 3 1 3

6 3 2 6

11

Activity: Trace the Nested Loop
You do: what will the following loop print? Try using a table to keep track
of the two loop control variables, then for each pair determine whether or
not it meets the condition.

for x in range(2, 6):

for y in range(10, 15):

if y % x == 0:

print(x, "divides", y)

12

Example: drawGrid(canvas, size)
Let's write a function that draws a
grid using Tkinter.

Instead of repeating calls of
create_rectangle, we'll use
nested loops (along with math and
logic) to determine where to draw
each square.

13

Sidebar: Function Call Canvas
Let's use a bit of code to
generate a new canvas in a
function call.

We just need to add in our
own call to our drawing
function in the middle!

import tkinter

def runDrawGrid():

root = tkinter.Tk()

canvas = tkinter.Canvas(root, width=400,

height=400)

canvas.configure(bd=0,

highlightthickness=0)

canvas.pack()

drawGrid(canvas, 4) # your call here!

root.mainloop()

14

First, Draw a Row
Let's start simple by drawing a row of cells
instead of a whole grid. Note that a row
repeats cells over the X axis. Each square
will be 50 x 50 pixels in size.

Loop over all possible columns from 0 to
size-1. We'll then draw a square for each.

Each square's top and bottom will be 0 and
50.

Discuss: How can we calculate a square's
left and right positions using only its
column number?

Desired outcome:

15

col 0 col 1 col 2 col 3

Loop Over Columns
The first square starts at x coordinate 0;
the next is one square over, so it starts
at 50. The third square has two squares
before it, so it starts at 2 * 50; etc..

If we number the squares from 0 to 4,
each square's left side starts at
col * 50, where 50 is the size of the
square. Add 50 to that coordinate to
get the right side.

def drawGrid(canvas, size):

for col in range(size):

left = col * 50

right = left + 50

canvas.create_rectangle(left, 0,

right, 50)

16

Draw Multiple Rows for a Grid
Now we just need to repeat the logic
that drew the first row. Take the code
from before and put it inside an outer
loop. Note that the outer loop
represents a cell's row, while the inner
loop represents a cell's column.

Calculate the top of each cell based on
the value's row, using the same logic
that found the column coordinates.

def drawGrid(canvas, size):

for row in range(size):

top = row * 50

bottom = top + 50

for col in range(size):

left = col * 50

right = left + 50

canvas.create_rectangle(left, top,

right, bottom)

17

Add Stripes with Conditionals
We can make the grid more exciting
by adding colors to the cells, to draw
stripes.

Stripes alternate by row or by
column. Check whether the
row/column is odd or even using the
mod operator.

if row % 2 == 0:

color = "red"

else:

color = "green"

canvas.create_rectangle(left, top,

right, bottom,

fill=color)

18

Activity: Vertical Stripes
You do: update the drawGrid code we just wrote to draw three columns
of stripes instead of two rows.

What needs to change?

19

Top-Down Design

20

Helper Functions
As you start creating more complex programs, you'll often need to write
many small functions that work together to solve a larger problem. We call
a function that solves part of a larger problem this way a helper function.

By breaking up a large problem into multiple smaller problems and solving
those problems with helper functions, we can make complicated tasks
more approachable. This is called top-down design.

21

Designing Helper Functions
How can you determine which helper functions are needed to solve a
problem?

Try to identify subtasks that are repeated or are separate from the main
goal; break down the problem into smaller parts. Have one subtask per
function to keep things simple.

22

Example: Achilles Number Sequence
Let's work through an example of top-down design as a class by writing a
program to print the first n numbers of the Achilles number sequence.

An Achilles number is a number that is powerful, but not a perfect power.
This is named after the ancient Greek hero Achilles, who was also very
powerful but not perfect!

Definitions
Powerful: a number where for every prime number x that divides it, x2 also
divides it.
◦ 36 is powerful. Prime factors: 2 and 3. 4 and 9 both divide 36.
◦ 2700 is powerful. Prime factors: 2, 3 and 5. 4, 9, and 25 all evenly divide 2700.
◦ 10 is not powerful. Prime factors: 2 and 5. 4 and 25 do not evenly divide it.

Perfect power: a number that can be represented as an integer raised to some
power greater than 1.
◦ 36 is a perfect power. It can be represented as 62.
◦ 2700 is not a perfect power. It is factored into 22 * 33 * 52; 302 * 3 is not perfect.
◦ 10 is not a perfect power. It isn't even powerful!

Achilles Sequence Subtasks
First, let's determine the subtasks we need to solve to generate the first n
Achilles numbers.

You do: what smaller tasks could be useful here?

Possible Subtasks
Here's one way to break the problem down into subtasks:

generateAchillesNumbers(n) – generates the first n numbers that are powerful
but not perfect powers.

isPowerful(x) – determines whether x is powerful

isPerfectPower(x) – determines whether x is a perfect power

isPrime(x) – determines whether x is prime

generateAchillesNumbers
Let's start with our main function,
generateAchillesNumbers. We know
that we want to generate n Achilles
numbers. There's no systematic way to
generate these numbers, so let's loop
through all numbers until we've found n
that meet the criteria.

Use the isPowerful and
isPerfectPower helper functions we've
planned to write in order to simplify the
program. We don't have to worry about
how we'll determine if the numbers are
Achilles numbers – the functions will do
that for us!

def generateAchillesNumbers(n):
count = 0
num = 1
while count < n:

if isPowerful(num) and \
(not isPerfectPower(num)):
count += 1
print(num)

num += 1

isPowerful
Now we need to implement the helper
functions so we can actually run the main
function, starting with isPowerful.

A number is powerful if for every prime
number x that divides it, x2 also divides it.
Find every prime factor of the number
(using mod and the isPrime function we
wrote earlier), and check if the square of
that number divides it too.

If any prime factor's square doesn't divide
it, we can return False right away. If all of
the prime factors obey the rules, return
True at the end.

def isPowerful(x):
for factor in range(2, x+1):

if x % factor == 0 and \
isPrime(factor):
if x % (factor**2) != 0:

return False
return True

isPerfectPower
Now we can implement the second helper
function, isPerfectPower.

A number is a perfect power if it can be
represented as an integer raised to some
power greater than 1. How can we check
this? Maybe try taking the square root,
then the cube root, etc, and see whether
each result creates an integer.

When can we stop? When the root
produced rounds to 1, we know the
number is not a perfect power, because 1
raised to any power is still 1.

import math
def isPerfectPower(x):

pow = 2
root = x ** (1/pow)
while round(root) > 1:

if math.isclose(root, round(root)):
return True

pow += 1
root = x ** (1/pow)

return False

Put It All Together
Once we've implemented all the needed helper functions, we can run
generateAchillesNumbers, and it should work!

generateAchillesNumbers does just one thing, but relies on
isPowerful and isPerfectPower to work. Each of those helpers does
just one thing, but they each rely on other functions (isPrime and
math.isclose) to work.

By using top-down-design, we can produce complex behavior out of a set
of simple functions.

Learning Goals
Use nesting of statements to create complex control flow

Implement and use helper functions in code to break up large problems
into solvable subtasks

