
#3-3: User Interaction
CS SCHOLARS – PROGRAMMING

Learning Goals
Create interactive programs using text-based interaction to process user
input

Create interactive programs using event-based interaction to support
user interaction

2

Text-Based Interaction

3

Interacting with the User
Now we have everything that we need to
build programs that can authentically
interact with the person using them (the
'user').

When we build an interactive program, we
have to take input from the user, process
it in the system, and use it to produce
output that will be shown to the user in
some way.

This process repeats indefinitely until
some goal is met.

4

input

output

Text-based Interaction
One way to process input and create output is via text-based interaction.

Get all user input through the input function we learned previously.
Produce all output as text displayed via the print function to the screen.

To repeat the procedure, use a loop. Since we usually do not know exactly
how many repetitions will be needed, a while loop is often used (with
the loop control variable based on the user's input).

5

Example: Data Entry
Let's write a simple program
that gets multiple inputs from
the user and process them like
a data stream.

We'll need to give the user a
way to signal that they're done
entering numbers. This can by
done with a special input, like
the string 'q'.

Note that a new input is
collected and a new output is
shown in every iteration of the
loop.

numbers = []

value = input("Enter a number, or q to quit:")

while value != "q":

num = int(value)

numbers.append(num)

print("Current numbers:", numbers)

value = input("Enter a number, or q to quit:")

print("Total sum:", sum(numbers))

6

Validating Input
We may sometimes need to validate user
input, to make sure it matches the
requirements.

For example, in the data entry program,
we might want to ensure that the input
actually is a number, and a positive
number, before accepting it.

It often helps to move processing user
input into a helper function, to avoid
overcomplicating the original function.

def getUserInput():
while True: # returning will stop loop

value = input("Enter a number, or q to quit:")
if value == "q":

return value
elif value.isnumeric():

value = int(value)
if value > 0:

return value

def processData():
numbers = []
value = getUserInput()
while value != "q":

numbers.append(value)
print("Current numbers:", numbers)
value = getUserInput()

print("Total sum:", sum(numbers))

7

Activity: reorderList
You do: write a function that takes a list of strings and asks the user to
enter a new order for the strings, one value at a time. For example, if we
call reorderList(["a", "b", "c", "d"]), the user could enter c,
then a, then d, then b, and the function would return the list ["c",
"a", "d", "b"].

Make sure your program has clear requests for input, understandable
output, a well-managed interaction loop, and validates the user input!

8

Event-Based Interaction

9

Event-Based Interaction
Most programs that you interact with use much more than just text! They
may let you use the mouse to interact with the screen and the keyboard
to provide other inputs (like directions with the arrow keys). The program
then probably displays results visually, not just through text.

That's what we'll work on next – how to write a program that can capture
more complex user events and produce more complex output. We'll do
this with an interaction framework that uses Tkinter to display graphics
and accept user mouse and keyboard input.

10

Interaction Parts in Code
Our interaction code will be composed of three parts:
◦ A model which stores the core data used in the interaction in a shared data

structure
◦ Event controllers which run rules that update the model components when

user events occur
◦ A graphical view which repeatedly displays the current state of the model

All three of these parts will be organized in an interaction framework
which sets up the initial model, manages the controllers, and updates the
view as needed. That framework is provided for you, but you'll need to fill
in the parts!

11

Model, View, Controller

12

Model

Controller View

Making the Components
We need to be able to pass the whole model around the code as a single variable. We'll
do this by creating an object called data and adding components to that object.

These components will act just like variables; the only difference is that we'll use
data.componentName instead of componentName by itself. It's similar to when we
import a library or call a method on a list. For example, to store information about a
circle that represents some part of the model, we could set:

data.x = 200
data.y = 200
data.r = 50

By storing all the components in one structure we can pass the same structure around to
all the functions we write as a single parameter. This structure will be mutable (like
lists!), so we'll be able to update it directly in the rule functions, then display the
updated data in the view function.

13

Displaying the Model
To display the whole model, we'll use Tkinter to draw graphics that represent the components
visually. By referring to component values in data in the view function, we can make graphics
that change alongside the model.

For example, if data.x = 200, data.y = 200, and data.r = 50, we could draw a circle
with:

canvas.create_oval(data.x – data.r, data.y – data.r,

data.x + data.r, data.y + data.r)

We'll erase and re-draw the graphics window every time the rules of the program run. If we
change the components a little bit at a time, this makes the display appear to update smoothly.

14

Running the Rules
We can run the either when a mouse event happens, or when a keyboard event
happens.

When you take an action on your computer, a signal is sent from the computer hardware
to any programs that are currently running. That signal has information about the type
of the event (key press vs. mouse click), plus any additional information that might be
useful (which key was pressed).

Once this signal is received, it triggers a function. If that function changes the model's
components in data, this will simulate the model changing over time!

data.x = data.x + 5 # move the circle to the right on mouse click

15

Interaction Functions
Now we have everything we need for the interaction framework. You can find
starter code for the framework linked on the course website. For each interactive
program you make, start with the starter code, then update four functions to
build a simple simulation:

◦ init(data)makes the original components. data is the model object

◦ keyPressed(data, event) and mousePressed(data, event) run the rules
to update data. event holds information about the event.

◦ redrawAll(canvas, data) displays the model. canvas is a Tkinter canvas

This is different from the code we're used to because the functions work
together instead of running in a sequential order.

16

Simple Example – Color-Changing Ball
Let's start with a simple example. Say we want to draw a circle and have the color
of the circle change every time the user clicks the mouse.

The model should track any values that might change. In this case, that's the
color of the circle. Set an initial component value in init.

The rules should describe how the model changes over time. In this case, we
change the color in the shared data model with every call to mousePressed.

The view should draw a circle in the middle of the window and set its color based
on the color in the model. This is done in redrawAll.

17

Simple Example Code
def init(data):

put variables in data here
data.color = "red"

def redrawAll(canvas, data):
(200, 200) is center point
make sure to reference data for the parts that change!
canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,

fill=data.color)

def mousePressed(data, event):
import random
Let's pick a color randomly!
newColor = random.choice(["red", "orange", "yellow",

"green", "blue", "purple"])
data.color = newColor # update data to change the model

18

Activity: Make the circle grow
You do: open the interaction starter code and copy in the functions from
the previous slide. Run the code to make sure it works, then modify the
code in the three functions so that the circle grows larger each time a key
is typed.

Hint: you'll need to add one component to the model, the thing that is
changing. You should change that component in keyPressed and access
it while drawing the circle in redrawAll.

19

keyPressed Events
We can use the event parameter in the rules functions to create more
personalized interaction!

In keyPressed, the event parameter contains two values we can access with a
. (like string or list methods and the data components):

◦ event.char is a string that holds the character pressed

◦ event.keysym is a string that holds the 'name' of the character, for
characters we can't show in a string (e.g., Enter or BackSpace)

If we want to draw the last-pressed character in the middle of the screen, for
example, we would store that character in data, then draw it in redrawAll:

def keyPressed(event, data):
data.text = event.char

20

Example Key Event
def init(data):

data.color = "red"
data.tmp = "" # need to hold partial strings

def redrawAll(canvas, data):
canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,

fill=data.color)

def keyPressed(event, data):
build up a color string one char at a time until user presses Return
if event.keysym != "Return":

data.tmp += event.char
else:

move the color into data.color
data.color = data.tmp
data.tmp = ""

21

Activity: move circle up/down
You do: take the simulation code from the last activity (color-changing
circle) and update it so that the circle moves up when the user presses the
up key and down when the user presses the down key. The circle no
longer needs to change colors when other keys are pressed.

Note: you should use event.keysym. You'll be able to check it against
"Up" and "Down".

22

mousePressed Events
In mousePressed, the event parameter holds the pixel location where the user
clicked on the canvas.

◦ event.x is the x location

◦ event.y is the y location

If we want to move a circle around the canvas to be centered wherever you click,
we'd need to store the center location and draw the circle based on the model
location in redrawAll:

def mousePressed(event, data):
data.cx = event.x
data.cy = event.y

23

Example Mouse Event
def init(data):

data.color = "red"

def redrawAll(canvas, data):
canvas.create_oval(200 - 50, 200 - 50, 200 + 50, 200 + 50,

fill=data.color)

def mousePressed(event, data):
import random
newColor = random.choice(["red", "orange", "yellow",

"green", "blue", "purple"])
Check if the user clicked inside the circle
Is the distance between the center and the click less than the radius?
if ((event.x - 200)**2 + (event.y - 200)**2)**0.5 <= 50:

data.color = newColor

24

Activity: make circle shrink
You do: take your code from the previous activity and modify it so that the
circle shrinks whenever the user clicks inside it. (If the user clicks outside,
it can change colors instead).

You can start with the bounds check from the previous slide, but you'll
need to change what happens in the conditional body!

25

Example: Circle Application
Now we can use all of this together to build an interactive program that
does something interesting!

Let's implement a simple application that generates a new circle of
random size and color every time the user clicks on the screen. Every time
the user clicks Backspace, a random circle is deleted.

26

27

def init(data):
data.circles = []

def redrawAll(canvas, data):
for circle in data.circles:

[x, y, size, color] = circle
canvas.create_oval(x - size, y - size,

x + size, y + size, fill=color)

def keyPressed(event, data):
if event.keysym == "BackSpace":

if len(data.circles) > 0:
index = random.randint(0, len(data.circles)-1)
data.circles.remove(data.circles[index])

def mousePressed(event, data):
x = event.x
y = event.y
size = random.randint(5, 50)
color = random.choice(["red", "orange", "yellow",

"green", "blue", "purple"])
data.circles.append([x, y, size, color])

Learning Goals
Create interactive programs using text-based interaction to process user
input

Create interactive programs using event-based interaction to support
user interaction

28

Sidebar: Controller Functions – Event Loop
The event controller runs an event loop to capture the signals that the computer
sends out. To implement this event loop, we'll have our interaction system
constantly listen for events.

When an event occurs, the controller will catch it and send the event data on to
the correct rule function; then it will tell the view to update. This is done with a
special kind of Tkinter function called bind and is provided in the starter code.

With Tkinter we can listen for and bind functions to lots of different event types.
We'll care about just two: <Key>, a key press, and <Button-1>, a left mouse
click. There are lots of other Tkinter events we can implement if we want them:

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-types.html

29

https://anzeljg.github.io/rin2/book2/2405/docs/tkinter/event-types.html

