
Advanced Programming
#3: Animation
CS SCHOLARS – PROGRAMMING

Learning Goals
Create time-based animations within the interaction framework

2

Event-Based Interaction
In class we discussed event-based interaction, where we built programs
that responded to user mouse and keyboard events and modified a
Tkinter view to produce interactive behavior.

We can also build programs that changes graphics over time. In other
words, we can build programs that produce moving graphics, or
animation!

3

New Controller: timerFired
We'll add one new controller to our interaction framework – a time
controller. This controller will repeatedly call a rule function
(timerFired) at regular intervals.

If we change the state of the model in timerFired, that will cause the
model to constantly change as time passes. This can lead to fluid
movement!

4

Example: Moving Circle
To create a simple animation, we use the same approach as in
mousePressed and keyPressed – just change a value in the model and
use that changed value in makeView.

For example, to make a circle move constantly to the right, put this in
timerFired:, then use data.x in makeView:

data.x = data.x + 5 # move the circle to the right

5

Example: Bouncing Circle
Eventually the circle will move all the way off
the screen. By making timerFiredmore
complex, we can change the animation to
make the circle bounce instead!

Store two pieces of information in the model –
the current x position and the current
direction. When the ball would overlap with
the edge of the screen, reverse the direction.

Note that we compare the left side of the ball
to the left edge of the screen, and the right
side of the ball to the right side of the screen

def init(data):
data.x = 200
data.dx = 10 # delta x

def redrawAll(canvas, data):
canvas.create_oval(data.x - 20, 200 - 20,

data.x + 20, 200 + 20,
fill="red")

def timerFired(data):
if new position would be offscreen
if (data.x + data.dx - 20) < 0 or \

(data.x + data.dx + 20) > 400:
reverse direction
data.dx = - data.dx

data.x = data.x + data.dx

6

Activity: Bounce Vertically
You do: try adding some code so that the ball bounces vertically as well as
horizontally. To make the code extra interesting, make the vertical
movement rate different from the horizontal rate!

7

Activity Answer
def init(data):

data.x = 200
data.dx = 10
data.y = 200
data.dy = 15

def redrawAll(canvas, data):
canvas.create_oval(data.x - 20, data.y - 20, data.x + 20, data.y + 20, fill="red")

def timerFired(data):
if (data.x + data.dx - 20) < 0 or (data.x + data.dx + 20) > 400:

data.dx = - data.dx
data.x = data.x + data.dx

if (data.y + data.dy - 20) < 0 or (data.y + data.dy + 20) > 400:
data.dy = - data.dy

data.y = data.y + data.dy

8

Rate Changes Update Speed
The current ball movement might not feel very smooth. How can we make it look better?

You can change the update rate in the original call to runSimulation. This rate is the length in
seconds between calls to timerFired.

By default we set the rate to 0.1 (10 times per second). If you make the number smaller, the
function will be called more times per second (for example, 0.05 would be called every 0.05
seconds, 20 times per second); this makes the animation smoother. If you make the number
larger, it will be called less often and the animation will move slower.

In Tkinter, you can't go any faster than 1ms (1/1000 second) between calls. Realistically, you
won't see much improvement beyond 10ms (1/100 second) either.

9

How the Time Loop Works
How does this work, anyway?

The time controller in the function timeLoop calls our function
timerFired, then calls redrawAll to update the view. It simulates a
time loop with the built-in function canvas.after. This function calls
timeLoop again (like an infinite loop) but pauses before making the call.
That lets us repeat infinitely without freezing the window.

The function runSimulation(width, height, rate) sets up the
initial time loop. It runs itself behind the scenes after that.

10

Example: Bubble Popping Game
Let's put animation together with user interaction to make a game!
Specifically, we want to make a bubble-popping game, where new
bubbles appear on the screen constantly and the user tries to pop them
by clicking on them.

First, we need to determine what must be stored in the model:
◦ Information about the bubbles – position, size, color

◦ Score – how many bubbles have been popped?

11

Step 1: Generate Bubbles
First, let's just make an animation that
makes bubbles appear on the screen at
regular intervals.

Each bubble will be represented as a [x,
y, size, color] list, like we did in the
activity in class.

The default rate is too fast! Change it to
0.5 instead of 0.1.

def init(data):
data.bubbles = []

def redrawAll(canvas, data):
for bubble in data.bubbles:

[x, y, size, color] = bubble
canvas.create_oval(x - size, y - size,

x + size, y + size,
fill = color)

def timerFired(data):
Make a new bubble
size = random.randint(10, 25)
Make sure bubbles are not offscreen
x = random.randint(size, 400-size)
y = random.randint(size, 400-size)
color = random.choice(["red", "green", "blue"])
data.bubbles.append([x, y, size, color])

12

Step 2: Click on Bubbles
To have the user click on the bubbles, we
need to detect which bubble (if any) was
clicked.

Iterate through the list of bubbles and use
the distance formula to check whether
the distance between the clicked location
and the center of the circle is within the
radius (size) of the circle. If it is, remove
that circle from the list and return to exit
the loop.

Removing the circle from the list also
removes it from the screen!

def mousePressed(event, data):
for bubble in data.bubbles:

[x, y, size, color] = bubble
dist = ((x - event.x)**2 + \

(y - event.y)**2)**0.5
if dist <= size:

data.bubbles.remove(bubble)
return

13

Step 3: Keep Track of Score
Finally, store a score in the model,
display it in makeView, and update
it when a bubble is removed in
mousePressed.

Now we have a proper game!

def init(data):
data.bubbles = []
data.score = 0

def redrawAll(canvas, data):
for bubble in data.bubbles:

[x, y, size, color] = bubble
canvas.create_oval(x - size, y - size,

x + size, y + size,
fill = color)

canvas.create_text(200, 20,
text="Score: " + str(data.score),
font="Arial 20 bold")

def mousePressed(event, data):
for bubble in data.bubbles:

[x, y, size, color] = bubble
dist = ((x - event.x)**2 + \

(y - event.y)**2)**0.5
if dist <= size:

data.bubbles.remove(bubble)
data.score += 1
return

14

Learning Goals
Create time-based animations within the interaction framework

15

