
#4-1: Debugging,
Testing, and Style
CS SCHOLARS – PROGRAMMING

Learning Goals
Debug logical errors by using debugging strategies

Write tests that verify whether a program is working as expected

Apply general style principles to write clear and robust code

2

Python Errors
Previously, we talked about the three types of errors you encounter while
coding: syntax, runtime, and logical.

It's not enough to recognize what these errors are – as a programmer, you
have to have a strategy for how to fix these errors when you encounter
them as well!

Better yet, it's good to use coding approaches that reduce the number of
errors you encounter, like testing and style.

3

Debugging

4

Error Messages Can Help... Sometimes
At the very beginning of the program, we
talked about how to read error messages to
debug syntax and runtime errors:

1. Look for the line number. This line tells you
approximately where the error occurred.

2. Look at the error type.

3. If it says SyntaxError, look for the inline
arrow. The position gives you more
information about the location of the
problem (though it isn't always right).

4. If it says something else, read the error
message. The error type and its message
gives you information about what went
wrong.

5

inline arrow

line number

error type

Debug Logical Errors By Checking Inputs and Outputs
When your code generates a logical error,
the best thing to do is compare the
expected output to the actual output.

1. Copy the function call from the assert
that is failing into the interpreter.
Compare the actual output to the
expected output.

2. If the expected output seems incorrect,
re-read the problem prompt.

3. If you're not sure why the actual output
is produced, use a debugging process
to investigate.

6

function call expected output

Understanding the Prompt
When something goes wrong with your code, before rushing to change the
code itself, you should make sure you understand conceptually what your
code does.

First- make sure you're solving the right problem! Re-read the problem
prompt to check that you're doing the right task.

It can often help to analyze the test cases to make sure you understand
why each input results in each output. We'll talk more about these a bit
later in the lecture.

7

Ways to Debug
There are many approaches you can take towards debugging code
effectively. Let's highlight three.

Rubber Duck Debugging: talking through your code

Printing and Experimenting: visualizing what's in your code

Thorough Tracing: checking each part of the code line-by-line

8

Rubber Duck Debugging
If you find yourself getting stuck, try rubber duck debugging. Explain what
your code is supposed to do and what is going wrong out loud to an
inanimate object, like a rubber duck.

In the process of explaining your code out loud to someone else, you may
find that a piece of your code does not match your intentions, or that you
missed a step. You can then make the fix easily. This works more often than
you might think!

9

Print and Experiment
If rubber duck debugging doesn't work, try printing and experimenting to
determine where in your code the problem is.

Add print statements around where you think the error occurs that display
relevant values in the code. Run the code again and check whether the printed
values match what you think they should be at that stage in the code.

Each print call should also include a brief string that gives context to what is
being printed. For example:

print("Result pre-if:", result)

10

Making Hypotheses
If something looks wrong in the printed results, make a hypothesis about
what the problem is and adjust your code accordingly. Then run the code
again and see if the values change. Repeat this as much as necessary until
your code works as expected.

An important part of this process is that you have to be intentional about
the changes you make. Don't just change parts of the code haphazardly -
have a theory for why each change might fix your problem.

11

Activity: Debug getSize
Here is a function that is supposed to
take a shirt size in inches and return
the size as a string (small, medium, or
large). But it's not working correctly.

Work with a group to debug the
program. Try using either rubber duck
debugging or print and experiment to
figure out what's going wrong.

def getSize(length):

if length <= 38:

print("small")

elif length <= 40:

print("medium")

else:

print("large")

return length

assert(getSize(39) == "medium")

12

Thorough Tracing
If you can't find the problem through printing and experimenting, you
may have to resort to thorough tracing to determine what's going wrong.

Step through your code line by line and track on paper what values should
be held in each of your variables at each step of the process.

Compare your traced values with what you would create step-by-step if
you were solving the problem by hand. This might help you identify where
the problem is occurring.

13

Tracing with Tools
Learning how to trace code by hand is a useful skill, but there are also tools that can help
support you during debugging. Start with the website http://pythontutor.com/ .

If you paste your code into the editor and click 'Visualize Execution', you can step
through your code line by line. The tool will visualize the state of the program on the
right as you step through it. This can be very helpful!

14

http://pythontutor.com/

Activity: Practice with PythonTutor
You do: Here is a new buggy program.
This one is supposed to take two lists,
multiply each pair of elements at the
same index, and return a list holding
the results, but it has a bug.

Try pasting the program into
PythonTutor and stepping through
the program line by line. Link:
http://pythontutor.com/

What do you notice as you're tracing
the program? What stands out?

def multiplyLists(lst1, lst2):
result = []
for i in range(len(lst1)):

for i in range(len(lst2)):
result.append(lst1[i] * lst2[i])

return result

assert(multiplyLists([1, 2, 3],
[4, 5, 6]) == \

[4, 10, 18])

15

http://pythontutor.com/

Debugging is Hard
Finally, remember that debugging is hard! If you've spent more than 15
minutes stuck on an error, more effort is not the solution. Get a friend to
help, or take a break and come back to the problem later. A fresh mindset
will make finding your bug much easier.

16

Testing

17

Writing Your Own Tests
In real life (unlike homework assignments), test cases aren't provided for
you. You have to write your own tests if you want to make sure that your
code works properly.

In general, you want to have a set of tests for every function that you
write. Designing those tests is a bit of an art form!

18

Testing
When writing test functions, you need to cover likely cases where things
can go wrong. If you don't, your program might develop a bug without
you realizing!

In particular, you should always try to cover:
◦ Normal cases – provided and obvious examples
◦ Large cases – larger-than-usual input
◦ Edge cases – pairs of input that result in opposite choices in the code
◦ Special cases – 0 and 1, empty string, unexpected types
◦ Varying results – make sure that all your test cases don't return the same

result!

19

Example Test Cases
Recall the isPrime program we wrote earlier in the program. Let's write some test cases for
it!

assert(isPrime(18) == False) # normal case

assert(isPrime(37) == True) # varying result

assert(isPrime(29*37) == False) # large input

assert(isPrime(2) == True) # edge case

assert(isPrime(25) == False) # edge case

assert(isPrime(1) == False) # special case

20

Testing findMax
You do: Try to come up with test cases for each of these categories for a
function findMax, which takes a list of numbers and returns the largest
number in the list.

Normal case:

Large case:

Edge case:

Special case:

Varying results:

21

Test first!
There's a temptation when programming to write the code first, then test
it when you're done.

It's actually much more useful to write the tests first, then write the code!
Writing the tests will help you better understand what the code needs to
do.

This is called test-driven development.

22

Style

Real-World Coding
When you're working on a homework assignment, you probably mainly
care about getting the code to work.

But this isn't how programming works in real life. If you write a piece of
code that accomplishes a task, it's highly likely that you or someone else
will want to use that code again at some point in the future.

It's even possible that you'll want to change the code slightly when the
goals of the task change.

Purpose of Style
Whenever you write code that anyone (including yourself) will look at
again in the future, you should write that code with good style.

Style is all the decisions you make as you write code about how to
organize and implement an algorithm.

It's very much like a writing style or a drawing style; everyone will
approach how they organize their code a little differently.

Different Styles
Input: int

Output: bool

def is_prime(num):

if num < 2:

return False

for factor in range(2, num):

if num % factor == 0:

return False

return True

def isPrime(x):

"""

takes an integer and returns

whether or not it's prime

"""

if(x<=1):

return(False)

check each possible factor

for i in range(2,x):

if((x%i)==0):

return(False)

return(True)

Style Principles
There are lots of recommendations for how to write code with good style.
We'll group them into two major categories:

◦ Clarity – principles that make your code easier to read

◦ Robustness – principles that make code easier to modify

Discuss: what could go wrong if your code is not clear? What if it's not
robust?

Style – Clarity

Style Principles for Clarity
You spend as much time reading code as you do writing code, if not more!
Writing code that is clear and easy to read is therefore extremely important.

We'll look at four general principles for writing clear code:

1. Use consistent formatting

2. Use good naming conventions

3. Don't include unnecessary code

4. Remember to document

Consistent Formatting
In general, try to be consistent with how you format whitespace in code.

Python will let you get away with somewhat uneven indentation in different
parts of a program, but the result is harder to read. Be consistent about whether
you use spaces or tabs, and always use the same number of spaces or tabs when
indenting code.

BAD
def isPrime(x):

if x < 2:
return False

for factor in range(2, x):
if x % factor == 0:

return True
return False

GOOD
def isPrime(x):

if x < 2:
return False

for factor in range(2, x):
if x % factor == 0:

return True
return False

Consistent Formatting
Code is also easier to read when the whitespace used between tokens is consistent.

You can choose to use no unnecessary whitespace, or add a space between every pair
of tokens, or even choose some operators that will have whitespace added and some
that won't.

BAD

x =(3+ 2) / 5

GOOD

x = (3 + 2) / 5

Also- don't let your lines of code get too long. A general guideline is to pick a number of
characters - let's say 80 - and make sure every line of code you write is no longer than
that length. Thonny lets you place an indicator in the editor at that location.

Good Naming Conventions
It's important to give your variables descriptive names that describe the data held by the
variable. Having descriptive, meaningful names will make understanding code much easier.

BAD
def isPrime(a):

if a < 2:
return False

for b in range(2, a):
if a % b == 0:

return True
return False

GOOD
def isPrime(num):

if num < 2:
return False

for factor in range(2, num):
if num % factor == 0:

return True
return False

There are a few cases where seemingly-meaningless variable names have gained meaning over
time, usually when they are shorthand for a longer word. For example, we often use x, y, and n
for numbers. These are okay to use when there's no greater meaning behind the variable.

Avoid Unnecessary Code
Unnecessary code is code that will never actually be run by Python, or code that Python
runs but never uses in a meaningful way (like a variable that is defined, then never
used). We also refer to this as dead code.

Unnecessary code won't actually harm your program, but it does make the program
more complicated to understand.

BAD
def isPrime(num):

if num < 2:
return False

end = num
for factor in range(2, num):

if num % factor == 0:
return True

else:
pass

return False
return

GOOD
def isPrime(num):

if num < 2:
return False

for factor in range(2, num):
if num % factor == 0:

return True
return False

Document Your Code
Finally, make sure to document your code using comments! We haven't talked much about when
to write comments. In general, comments are most useful when they explain something that is
not immediately obvious from the code itself.

Consider this code snippet, from isPrime. This is a good comment because it clarifies something
that might not be immediately obvious- we intentionally skipped num because it's okay for a
prime number to divide itself.

GOOD
def isPrime(num):

if num < 2:
return False

do not iterate over 1 or num because prime
numbers are divisible by themselves and 1
for factor in range(2, num):

if num % factor == 0:
return True

return False

Activity: Find Style Errors
You Do: What are some clarity style errors in this piece of code?

def sumToN(n):

tmp = 0

for abc in range(n):

tmp += abc

abc=abc+1

return tmp

Style – Robustness

Style Principles for Robustness
There are also several principles that will help you write robust code. This will
make your code easier to change and update over time, and decrease the
chance of bugs occurring.

We'll look at four general principles for writing robust code:

1. Avoid repetitive code
2. Avoid magic numbers
3. Join up related conditionals
4. Test all functions

Avoid Repetitive Code
First, try not to write repetitive code. This is code where similar logic is repeated over many lines instead of
being condensed into a single structure.

When you find yourself repeating code- and especially when you find yourself copying and pasting code –
look for the pattern and move it into a loop or a generalized action. Helper functions can be useful here too.

BAD
def coordToRow(x):

if x < 50:
return 0

elif x < 100:
return 1

elif x < 150:
return 2

elif x < 200:
return 3

GOOD
def coordToRow(x):

for row in range(4):
if x < (row+1) * 50:

return row

ALSO GOOD
def coordToRow(x):

return x // 50

Avoid Magic Numbers
Second, avoid using magic numbers. These are numbers used somewhere in an
algorithm for no clear reason, without being stored in a variable first.

Magic numbers are mainly a problem when it comes to updating code. Consider what
would be required to change the size of the grid cells in these two implementations.

BAD
def drawGrid(canvas, canvasSize):

for row in range(4):
top = row * 50
bottom = top + 50
for col in range(4):

left = col * 50
right = left + 50
canvas.create_rectangle(left, top,

right, bottom)

GOOD
def drawGrid(canvas, canvasSize):

rows = 4
cellSize = canvasSize / rows
for row in range(rows):

top = row * cellSize
bottom = top + cellSize
for col in range(rows):

left = col * cellSize
right = left + cellSize
canvas.create_rectangle(left, top,

right, bottom)

Non-Magic Numbers
Not every number is a magic number. For example, to get the ones digit of
a number you have to mod by 10. In this case, it's pretty clear why 10 is
used, and you're not likely to change it to anything else in the future, so
you don't need to store 10 in a variable.

0, 1, 2, and 10 are often (though not always) safe to use directly in code.

def getOnesDigit(num):
return num % 10

Join Up Conditionals
Third, make sure to join up conditionals as appropriate. If you have multiple conditional checks
that are happening in a row and only one of them should be visited, those checks should form
one if-elif-else block, not several independent ifs.

The main problem with not joining up related conditionals is that you might accidentally enter
more than one conditional branch if you aren't careful with the tests. It's just safer to combine
them all together.

BAD
def getSize(length):

size = ""
if length <= 38:

size = "small"
if 38 < length <= 40:

size = "medium"
if 40 < length:

size = "large"
return size

GOOD
def getSize(length):

size = ""
if length <= 38:

size = "small"
elif length <= 40:

size = "medium"
else:

size = "large"
return size

Test Your Functions
Finally, make sure to write test functions for each function you implement! Yes,
writing test cases takes time and can be tedious, but it will help you out a lot in
the long run.

Test functions are primarily useful at two points in time. The first is naturally
when you first write a function. The test function ensures that it's working the
way you want it to.

But test functions are also useful later on, if you need to modify a function.
Having an active test suite makes it easy to check whether a new modification
breaks any of the previous requirements of the program.

Activity: Find Style Errors
You Do: What are some robustness style errors in this piece of code?

def getSize(length):

size = "small"

if 38 < length and length <= 40:

size = "medium"

if 40 < length:

size = "large"

return size

Learning Goals
Debug logical errors by using debugging strategies

Write tests that verify whether a program is working as expected

Apply general style principles to write clear and robust code

44

