
SAMS
Programming A/B

Lecture #1 – Introductions & Basics
July 2, 2018

Mark Stehlik

7/2/2018 SAMS 2018 - Lecture 1 2

Outline for Today

• Overview of Course

• An intro to programming (in Python3) to be
continued in lab on Tuesday (group B) and
Friday (group A)

7/2/2018 SAMS 2018 - Lecture 1 3

The Course Staff

• Me
– Mark Stehlik <mjs@cs.cmu.edu>
• available 11:45 – 1:00 and 5:00 – 5:30 (GHC 6205)

• "The other professor"
– Kelly Rivers <krivers@cs.cmu.edu>, group C
• Similarly available (GHC 4109)

• TAs
– 4 undergrads, available in Citadel Commons (Gates

5th floor) from 6:30 – 9 Mon-Thu, 5 – 7 Sat, 1–5 Sun

7/2/2018 SAMS 2018 - Lecture 1 4

Course Logistics
• Course website: krivers.net/SAMS-m18/

• Lectures
– Come on time; use of electronic devices is prohibited

during lecture (you’re here to learn to program, not surf the
web or talk to your friends – do that on your time)

– Lecture slides will be posted after lecture

• Assignments
– Posted to course website
– Handin via autolab (more on this in lab)

7/2/2018 SAMS 2018 - Lecture 1 5

You

• Students who want to learn about programming
and computer science

• No experience necessary (we will instrument
that), not necessarily intending to major in CS
(but who knows…)

7/2/2018 SAMS 2018 - Lecture 1 6

Course content
An Introduction to Computing (two parts):

- understanding and creating algorithms
- implementing algorithms (writing programs); requires learning
about, and practicing with, “the tools”:

functions
expressions
conditionals
loops
strings
lists
graphics

7/2/2018 SAMS 2018 - Lecture 1 7

Course elements

• Homeworks are due Sunday 5:00pm (you can
start working on HW1 as early as today or
tomorrow as the first few problems only require
basic functions)
• Two "exams"

7/2/2018 SAMS 2018 - Lecture 1 8

Collaboration Policy
There are no group assignments in this class
Everyone should read and abide by:
https://www.cmu.edu/policies/student-and-student-life/academic-integrity.html
Here is some additional information for this course:

– You are allowed to talk with/work with other students on
homework assignments
• You can share ideas
• You can discuss things at a high (algorithmic, non-code) level (pictures)
• You should not share (or even look at) code!

– You must turn in your own work
• Your solution should be different than others
• The harder the assignment, the more differences we should see
• You should NEVER copy another student’’s file as a basis for your

solution. You should not let your files be copied by others!
– If you need help debugging, who do you ask?

7/2/2018 SAMS 2018 - Lecture 1 9

Programming vs. Computer Science

What is Python?

• Python is a programming language
– What's a programming language?
• A language that has a set of instructions/statements that,

when assembled correctly (syntactically and semantically)
can be compiled/interpreted by a computer and run
(executed) to perform a task

– So, it's a language, like English, Spanish, etc. with
rules for syntax (creating grammatically correct
statements) that have meaning (semantics)

• More on this as we go…

7/2/2018 SAMS 2018 - Lecture 1 10

Data Types
• Integers (int)

4 0 702 -53

• Floating Point Numbers (float)
4.0 -0.8 0.3333333333333333
7.34e+9

• Strings (string)
"hello" "A" " " "" "7/02"
'there' 'SAMS'

• Booleans (bool)
True False

7/2/2018 SAMS 2018 - Lecture 1 11

Arithmetic Expressions

• An expression is (an) operand(s) joined by
operators
• Mathematical Operators

+ Addition / Division (returns a float)
- Subtraction // Integer division
* Multiplication % Modulo (remainder)
** Exponentiation

• Python is like a calculator: type an expression and it
tells you the value.

7/2/2018 SAMS 2018 - Lecture 1 12

>>> 2 + 3 * 5
17

Order of Evaluation

• Use parentheses to force alternate precedence
7+ 5 * 6 ≠ (7 + 5) * 6

• Operators that have the same precedence are applied left to right except for exponentiation.
Exponentiation is applied right to left.

5 * 10 % 4 = (5 * 10) % 4

2 + 3 + 4 = (2 + 3) + 4

2 ** 3 ** 4 = 2 **(3 ** 4)

7/2/2018 SAMS 2018 - Lecture 1 13

Integer (floor) division

In Python3:
• 7 / 2 equals 3.5
• 7 // 2 equals 3
• 7 // 2.0 equals 3.0
• 7 // 2.5 equals 2.0
• 7.0 // 2 equals 3.0
• -7 // 2 equals -4

– beware! // rounds down to smaller number, not towards 0!

7/2/2018 SAMS 2018 - Lecture 1 14

Expressions vs. Statements

• Python	
 evaluates	
 an	
 expression to	
 get	
 a	
 value (number	

or	
 other	
 value)

• Python	
 executes	
 a	
 statement to	
 perform	
 an	
 action	
 that	

has	
 an	
 effect	
 (e.g.,	
 assigning	
 a	
 value	
 to	
 a	
 variable,	

printing	
 something)

7/2/2018 SAMS 2018 - Lecture 1 15

Variables

• A	
 variable	
 is	
 not an	
 “unknown” as	
 in	
 algebra.
• In	
 Python	
 programming,	
 a	
 variable	
 is	
 a	
 name you	
 use	

to	
 store	
 a	
 value.
• In	
 Python	
 we	
 give	
 a	
 name	
 to	
 a	
 value	
 using	
 an	

assignment	
 statement	
 (=):

16

>>> a = 5
>>> a
5

5a
Assignment
statement

Expression

Computer
memory

Python’s	

response

7/2/2018 SAMS 2018 - Lecture 1

Variables…

• All variable names must start with a letter
(lowercase recommended).

• The remainder of the variable name (if any) can
consist of any combination of uppercase letters,
lowercase letters, digits and underscores (_).

• Identifiers in Python are case sensitive.
Example:
– Value = 42 is not the same as value = 42

7/2/2018 SAMS 2018 - Lecture 1 17

Assignment statements

• In general
– variableName = expression

• What happens?
– The expression on the right of the = is evaluated
– The variable on the left is assigned that value

• Examples
– a = 5 (a is assigned 5)
– a = 2+5 (a is assigned 7, the result of evaluating 2+5)

7/2/2018 SAMS 2018 - Lecture 1 18

Basic output

• Printing
print("hello")
print("Mark")

• Printing multiple items
print("hello", "Mark")
print() # prints a blank line

• Printing on same line
print("hello", end ="")
print("Mark")

7/2/2018 SAMS 2018 - Lecture 1 19

Basic input

• Input a string
name = input("Enter your name: ")
print("Your name is:", name)

• Input an integer
x = input("Enter a number: ")
print(x, "divided by 2 =", x/2) #Error!

• Input an integer correctly with int()
x = int(input("Enter a number: "))
print(x, "divided by 2 =", x/2) #prints as expected

7/2/2018 SAMS 2018 - Lecture 1 20

Functions

• The building blocks of all programs
• Python provides some for you (built-in

functions), for example:
– abs(parameter)
– float(parameter)
– input(parameter)
– int(parameter)
– print(parameter[s])
– type(parameter)

7/2/2018 SAMS 2018 - Lecture 1 21

More "built-­in" functions using libraries

• Math library
– A predefined module of mathematical values and

functions we can use without writing the
implementation

• Examples
import math
r = 5 + math.sqrt(2)
radians = degrees * (math.pi/180)
print(math.factorial(10))

7/2/2018 SAMS 2018 - Lecture 1 22

Write your own function
def functionName(parameter[s]):

statements

• def is a reserved word and cannot be used as a
variable name.

• functionName follows the rules for variable names
• Indentation is critical. Your editor should
automatically indent the next line when you hit
<return>

• functionName(argument[s]) is how it is called

7/2/2018 SAMS 2018 - Lecture 1 23

Write your own function (example):

def tip(total): #defining function
return total * 0.18

tip(100) #calling the function
18.0
tip(135.72)
24.4296

7/2/2018 SAMS 2018 - Lecture 1 24

Running Python

• In the shell (at the command line)

• In an IDE (Integrated Development
Environment) like IDLE or Pyzo

7/2/2018 SAMS 2018 - Lecture 1 25

Program Errors

• Syntax ("compile-time") – Python cannot
understand what you have typed

• Runtime – program crashes

• Logical/Semantic – program runs but is incorrect

7/2/2018 SAMS 2018 - Lecture 1 26

