
SAMS
Programming A/B

Lecture #2 – Functions and Conditionals
July 3/6, 2018

Mark Stehlik

7/3,6/2018 SAMS 2018 - Lecture 1-2 2

Outline for Today

• Functions, continued

• Conditionals (if, if-else)

7/3,6/2018 SAMS 2018 - Lecture 1-2 3

Functions
• A function is a way to group statements together to do one

(small/specific) thing.
• Functions will be useful to organize our implementations of

algorithms (think of them as similar to paragraphs in an essay)
– paragraph is to essay as function is to algorithm
– functions are used to structure your program in a modular fashion

• Top-down Design
– Top-down design is a way to solve a problem wherein you start with a

high-level solution to the problem (an algorithm), break that solution up
into smaller steps, and then translate the solution into a program

– Often, each “small step” will be its own function
– Each function should be tested to make sure it works correctly!

Functions, continued…

• Functions are called and can take 0 or more arguments
that are bound to parameters in the function definition

• Parameters make functions more general:
– e.g., hello(name) vs. helloWorld()

• Functions return a value, whether you make that
explicit or not…

• Printing vs. returning a result from a function:
– Print prints the result to the console
– Return returns the result to the calling scope, allowing it to be

used in whatever way the caller needs (including printing J)

7/3,6/2018 SAMS 2018 - Lecture 1-2 4

Local variables and Scope rules

• Any variable defined inside the function (either
in the parameter list or in a statement) is said to
be local to the function

• Access to that variable/value exists only during
the duration of that function’s execution

• Variables whose values are changed inside the
function have no effect outside (even if they
have the same name)!

• Some examples when we go to the code…
7/3,6/2018 SAMS 2018 - Lecture 1-2 5

Conditionals

• Conditional execution based on a Boolean expression
(one that evaluates to True or False)

• Boolean expressions use relational and logical operators
– Relational operators: <, <=, >, >=, ==, !=
– Logical operators: not, and, or

• Precedence (highest to lowest):
– Exponentiation
– Multiplication, division, remainder
– Addition, subtraction
– Relationals
– Logicals (not, then and, then or)

7/3,6/2018 SAMS 2018 - Lecture 1-2 6

Conditionals…

• if statement
if (condition): #parentheses not strictly required!

statement # executed if condition is True
• if-else statement

if (condition):
statement # executed if condition is True

else:
statement # executed if condition is False

7/3,6/2018 SAMS 2018 - Lecture 1-2 7

Conditionals…

• if-elif…else statement
if (condition1):

statement1 #executed if condition1 is True
elif (condition2):

statement2 #executed if condition2 is True
elif (condition3):

statement3 #executed if condition3 is True
else:

executed if all of conditions1..n are False

7/3,6/2018 SAMS 2018 - Lecture 1-2 8

Conditionals…

• if-elif…else example
if (score >= 90): #again, parens not strictly required

print("Your grade is A!")
elif (score >= 80):

print("Your grade is B!")
elif (score >= 70):

print("Your grade is C!")
elif (score >= 60):

print("Your grade is D!")
else: print("You have failed!")

7/3,6/2018 SAMS 2018 - Lecture 1-2 9

What is "true"?

• Note, not capital-T True, which is a constant
• Easier to consider what is false:

– False (I hope so!)
– None (where have we seen that?)
– Zero for any numeric type
– An empty string ("") or an empty collection (later)

• All other values are true (that's a lot of truth) in
the context of an if expression (well, unless
compared to True)

7/3,6/2018 SAMS 2018 - Lecture 1-2 10

