
#2:	Structure	in	Code
SAMS	PROGRAMMING	C



Review	from	Monday
Understand	what	a	programming	language	is

Use	numbers,	text,	and	boolean	values	in	simple	
expressions

Write	code	that	stores	data	using	variables	and	functions



Warm-Up	Exercise
Write	a	program	finalCost(cost, tip) which,	given	the	cost	written	on	a	receipt	and	the	
desired	tip	percentage,	returns	the	total	cost	plus	the	tip.

Hint:	check	your	work	with	the	following	assert	statements!

def almostEqual(x, y):

return abs(x - y) <= 0.001

assert(almostEqual(finalCost(10.45, 0.18), 12.33) == True)

assert(almostEqual(finalCost(6.33, 0.10), 6.96) == True)



Today's	Learning	Goals
Use	conditionals	and	loops	to	control	program	flow

Practice	coding	with	programming	building	blocks



Conditionals
Sometimes	we	need	to	change	what	a	program	does	based	on	the	given	input.	We	can	do	this	
using	conditional	statements.	These	statements	choose	what	the	program	will	do	next	based	on	
a	boolean	expression.	

if <boolean_expression>:

<body_if_true>



Conditional	Example
In	the	following	example,	the	code	will	only	print	"I	see	you!"	if	the	boolean	variable	visible is	
set	to	True.	However,	it	will	always	print	"start"	and	"finish".

print("start")

if visible == True:

print("I see you!")

print("finish")



Else	conditions	for	alternatives
Sometimes	we	want	the	program	to	do	one	of	two	possible	actions	based	on	the	conditions.	In	
this	case,	instead	of	writing	two	if	statements,	we	can	write	a	single	if	statement	and	give	it	an	
else.	The	else	will	cover	the	case	when	the	boolean	expression	is	False.

if <boolean_expression>:

<body_if_true>

else:

<body_if_false>



Conditional	Example
Prediction	Exercise:	What	will	the	following	code	print?

x = 5

if x > 10:

print("Up high!")

else:

print("Down low!")

Question:	What	could	we	change	to	get	the	other	statement	to	print	instead?

Question:	Can	we	get	the	program	to	print	out	both	statements?



Multiple	Branches
If	we	want	to	have	more	than	two	options	for	what	the	program	can	do,	we	can	add	one	or	more	
elif statements	in	between	the	initial	if	and	final	else.	The	program	will	only	ever	enter	one	
branch	of	the	conditional.

if <boolean_expression_A>:

<body_if_A_True>

elif <boolean_expression_B>:

<body_if_A_False_and_B_True>

else:

<body_if_both_False>



Multi-Branch	Example
The	following	example	shows	a	three-branch	conditional	in	a	function.	We	don't	need	to	add	a	
return	statement	outside	the	conditional- why?

def number_sign(x):

if x > 0:

return "positive"

elif x < 0:

return "negative"

else:

return "zero"



Exercise:	gradeCalculator
Write	a	program	gradeCalculator that	takes	as	input	grade (a	number)	and	prints	the	letter	
grade	it	corresponds	to	as	a	string.

90+	is	an	A,	80-90	is	a	B,	70-80	is	a	C,	60-70	is	a	D,	and	below	60	is	an	R.	



Repeating	Actions
Say	you	want	to	write	a	program	that	prints	out	the	numbers	from	1	to	10.	Right	now,	that	
would	look	like:

print(1)

print(2)

print(3)

print(4)

print(5)

print(6)

print(7)

print(8)

print(9)



For	Loops	for	Repeated	Actions
There's	an	easier	way	to	repeat	actions!	You	can	use	a	for	loop to	tell	the	program	how	many	
times	to	repeat	a	step,	and	even	change	the	step	based	on	which	iteration	you're	on.

for <step_variable> in range(<min_num>, <max_num_plus_one>):

<steps_to_repeat>

So	our	previous	program	could	be:

for i in range(1, 11):

print(i)



Range
We	can	adjust	how	the	loop	repeats	by	changing	the	arguments	of	range.

When	range	has	one	argument,	it	represents	when	the	loop	should	end.	This	is	the	maximum	
number	plus	one.	In	this	case,	the	starting	argument	defaults	to	0.

range(10) -> 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

When	range	has	two	arguments,	the	first	argument	is	the	start	point	and	the	second	is	the	end.

range(2, 10) -> 2, 3, 4, 5, 6, 7, 8, 9

When	range	has	three	arguments,	the	first	is	the	start	point,	the	second	is	the	end,	and	the	third	
is	the	step.	The	step	tells	us	how	much	the	numbers	should	change	by.

range(2, 10, 2) -> 2, 4, 6, 8

range(10, 2, -1) -> 10, 9, 8, 7, 6, 5, 4, 3



Exercise:	Print	Even	Numbers
Write	a	function,	printEvensToN,	that	takes	as	input	n,	an	integer,	and	prints	out	the	even	
numbers	from	0	up	to	and	including	n.	

How	could	we	change	this	program	to	instead	sum the	even	numbers	from	0	to	n?



For	Loops	with	Strings
We	can	also	use	for	loops	to	iterate	over	data	that	can	be	thought	of	as	multiple	parts	put	
together	in	a	whole	(iterable).	A	string	can	be	thought	of	as	a	sequence	of	letters	(characters).	
Using	a	for	loop,	we	can	write	a	program	that	loops	over	each	of	the	characters	in	order.

for <character_variable> in <string>:

<character_action_body>



Example	String	Loop
Prediction	Exercise:	what	do	you	think	the	following	code	prints?

s = "Hello World!"

t = ""

for c in s:

t = c + t

print(t)



While	Loops	for	Uncertain	Conditions
For	loops	are	great	for	circumstances	where	we	know	exactly	how	many	times	we	need	to	loop.	
However,	this	isn't	always	the	case.	Sometimes	we	instead	tell	a	program	to	loop	until	a	certain	
condition	is	no	longer	True.	This	is	like	having	an	if	statement	that	keeps	repeating	until	it	
becomes	False.	These	are	called	while	loops.

while <boolean_expression>:

<loop_body>

While	loops	are	different	from	for	loops	in	several	ways,	but	the	most	important	difference	is	
that	while	loops	can	keep	looping	forever.	You	need	to	make	sure	that	the	loop	body	will	
eventually	change	the	boolean	expression	to	be	False	to	avoid	this!



Example:	sumDigits
Say	we	want	to	sum	the	digits	in	a	number.	We	can't	use	a	for	loop	(because	numbers	are	not	
iterable);	we	have	to	use	a	while	loop	in	which	we	add	each	digit	to	a	sum	and	then	remove	it.

def sumDigits(x):

total = 0

while x > 0:

digit = x % 10

total += digit # This is shorthand for total = total + digit.

x = x // 10

return total



Exercise:	While	Loop
Prediction	Exercise:	What	will	the	following	code	return?

def mystery(x):

if x <= 1:

return 0

count = 0

y = 1

while y < x:

y = y * 2

count += 1

return count



THESE	ARE	THE	CORE	PROGRAMMING	'BLOCKS'
WE'LL	USE	THEM	THROUGHOUT	THE	COURSE!

functions

conditionals

loopsvariables

data

operations



Today's	Learning	Goals
Use	conditionals	and	loops	to	control	program	flow

Practice	coding	with	programming	building	blocks



Remaining	Time:	Homework!
If	you	have	a	question,	raise	your	hand- we're	here	to	help!


