
#3:	Algorithmic	Thinking
SAMS	PROGRAMMING	C

Review	from	Last	Week
Understand	how	to	write	data,	operations,	variables,	functions,	conditionals,	and	loops	in	
Python

Use	these	constructs	to	build	simple	programs

Today's	Learning	Goals
Combine	blocks	of	code	to	create	complex	programs

Use	the	problem-solving	process	to	develop	solutions	to	new	problems

Use	testing	and	debugging	to	verify	that	our	programs	work

Combining	Blocks	of	Code
We	now	know	how	to	write	code	using	conditionals	and	loops.	However,	we	haven't	yet	tapped	
into	their	true	potential- combining the	blocks	of	code	to	create	complex	actions.

We've	already	seen	a	bit	of	this	potential	by	putting	conditionals	and	loops	in	functions.	
However,	we	can	also	nest	conditionals	and	loops	within	each	other.

Example:	Nested	Conditionals
Example:	write	a	program	that	returns	True	if	the	age	and	driving	status	of	the	person	allows	
them	to	drink.	How	many	different	ways	can	we	arrange	these	statements?

def canDrinkAlcohol(age, isDriver):

if age >= 21:

if isDriver == False:

return True

else:

return False

else:

return False

Example:	Nested	Loops
Example:	print	all	the	coordinates	on	a	plane	from	(0,0)	to	(5,5)

for x in range(5):

for y in range(5):

print("(", x, ",", y, ")")

Note	that	every	iteration	of	y	happens	anew	in	each	iteration	of	x.

Example:	Loops	in	Conditionals
Example:	if	the	given	number	is	postive,	print	the	numbers	up	to	that	number

def printToN(n):

if n > 0:

for i in range(n):

print(i)

Example:	Conditionals	in	Loops
Example:	return	only	the	lowercase	letters	in	the	inputted	string

def onlyLower(s):

t = ""

for c in s:

if "a" <= c <= "z":

t += c

return t

Problem	Solving
Programming	in	general	involves	determining	how	to	solve	problems	with	algorithms.	An	
algorithm	is	a	defined	process	that	accomplishes	some	task.	When	we	write	Python	code,	we	
are	encoding	the	process	into	a	language	the	computer	can	understand.

Doing	problem	solving	in	programming	can	be	broken	down	into	the	following	steps:

1. Understand	the	problem
2. Devise	a	plan
3. Carry	out	the	plan
4. Review	your	work

Understanding	the	Problem
The	first	step	of	problem	solving	is	to	thoroughly	undestand	the	problem.	This	sounds	simple,	
but	can	be	tricky.	If	you	thoroughly	understand	a	problem,	you	should	understand	what	the	
function	will	do	on	any	given	input.	This	will	involve	carefully	reading	the	WHOLE	prompt.

Example:	"Write	the	function	countLowercaseUpToPercent(s)	that	takes	a	possibly-empty	string	
and	returns	the	number	of	lowercase	letters	that	occur	in	the	string	before	the	first	percent	sign	
(%)."	What	should	countLowercaseUpToPercent(s)	return	when	given	the	value...
◦ "abc%def"
◦ "ABC%DEF"
◦ "abcDEF%"
◦ "12%34"
◦ "abcd"
◦ ""
◦ 4

Devising	a	Plan
Once	you	understand	a	problem,	you	need	to	devise	an	algorithm	or	plan	for	how	to	solve	it.	
Depending	on	the	prompt,	you	may	need	to	translate	a	provided	algorithm,	apply	a	known	
algorithm	pattern,	or	generate	a	new	algorithm.

Translate:	the	prompt	will	describe	an	algorithm	in	regular	language,	and	you	will	only	need	to	
translate	it	into	Python.	For	example,	"write	a	function	that	computes	the	distance	between	two	
points".	You	don't	need	to	invent	a	distance	algorithm- one	already	exists!

Apply:	the	prompt	may	be	similar	to	a	problem	you've	seen	before;	for	example,	"return	only	
the	uppercase	characters	in	the	given	string".	Then	you	can	apply	the	previous	code	pattern	and	
modify	it	as	necessary.

Generating	New	Algorithms
The	hardest	problems	are	those	in	which	the	algorithm	to	solve	the	problem	is	not	immediately	
familiar.	In	these	cases,	you	will	need	to	invent	an	algorithm	yourself.	The	best	way	to	learn	how	
to	generate	algorithms	is	to	practice,	as	each	problem	has	its	own	individual	quirks.	However,	
there	are	two	helpful	approaches	you	can	use	when	generating	algorithms:	induction and	top-
down	design.

In	induction,	you	investigate	several	pairs	of	inputs	and	outputs	to	attempt	to	find	a	pattern.	
That	pattern	can	then	be	generalized	into	an	algorithm.

In	top-down	design,	you	attempt	to	simplify	the	problem	by	breaking	it	down	into	multiple	
easier	problems.	You	can	then	write	code	using	helper	functions that	solves	the	main	problem,	
then	write	each	helper	function	individually	to	complete	the	work.

Example:	Generate	with	Induction
Example:	Write	the	function	nearestBusStop(street)	that	takes	a	non-negative	int	street	number,	
and	returns	the	nearest	bus	stop	to	the	given	street,	where	buses	stop	every	8th	street,	
including	street	0,	and	ties	go	to	the	lower	street,	so	the	nearest	bus	stop	to	12th	street	is	8th	
street,	and	the	nearest	bus	stop	to	13th	street	is	16th	street.

Look	at	where	the	output	changes	based	on	the	input,	graph	the	results,	and	write	the	program.

4	– 0

5	– 8

8	– 8

12	– 8

13	– 16

Example:	Generate	with	top-down	design
Example:	Write	the	function	mostFrequentDigit(n),	that	takes	a	non-negative	integer	n	and	
returns	the	digit	from	0	to	9	that	occurs	most	frequently	in	it,	with	ties	going	to	the	smaller	digit.

This	initially	seems	difficult- how	can	we	keep	track	of	the	most	frequent	number	as	we	go	
through	the	digits?	It	helps	to	think	about	it	from	a	different	angle- can	we	look	at	each	possible	
digit's	count?

If	we	assume	we	can	write	a	helper	function	digitCount(n,	d)	(where	n	is	the	initial	number	and	
d	is	the	digit	we're	counting),	the	problem	becomes	simpler;	we	just	need	to	go	from	0	to	9,	
calling	the	helper	function	and	updating	the	most	frequent	digit	as	needed.

Writing	digitCount	is	then	easy- it's	just	a	variant	of	numberLength!

Carrying	out	the	Plan
Once	we've	come	up	with	a	working	algorithmic	plan,	we	need	to	carry	out	the	plan by	
translating	it	into	code.	As	you	become	fluent	in	coding	and	Python,	you'll	be	able	to	go	straight	
from	idea	to	code,	but	when	you're	starting	out,	this	might	be	difficult!

If	you're	having	trouble,	it	can	help	to	start	by	writing	the	algorithm	as	a	series	of	steps	in	plain	
language,	either	on	paper	or	in	comments.	Your	written	algorithm	should	be	clear	and	complete	
enough	that	another	person	could	carry	it	out,	and	should	distinctly	label	any	information	that	
needs	to	be	remembered	(that	information	will	become	variables	later	on).

Once	your	written	algorithm	is	complete,	you	can	translate	one	step	at	a	time into	code.	If	you	
don't	know	how	to	do	a	certain	step	in	Python,	you	can	check	the	course	notes	or	ask	a	TA	to	
find	the	appropriate	programming	tool,	then	experiment	with	that	tool	in	the	interpreter	until	
you	understand	it.

Reviewing	your	work
Finally,	once	your	program	is	written,	you	need	to	review	your	work by	running	and	testing	your	
code.	This	isn't	like	spot-checking	your	work	on	a	written	assignment,	because	the	computer	can	
already	tell	you	when	something	is	wrong!

Remember	the	input-output	pairs	we	considered	in	Step	1?	We	can	now	turn	those	into	test	
cases,	then	run	the	program	on	the	test	cases	to	make	sure	it's	working	appropriately.	When	a	
test	case	fails,	we	can	use	debugging to	determine	what's	going	wrong.	Once	all	the	test	cases	
are	passing,	you	should	read	your	program	one	more	time	to	make	sure	it	makes	sense,	then	
submit	it	for	final	review.

We'll	go	over	testing	and	debugging	in	more	depth	next.	First,	let's	practice	problem	solving...

Exercise:	nthPrime
Exercise:	write	the	function	nthPrime(n),	which	takes	a	non-negative	int,	n,	and	returns	the	nth	
prime	number,	starting	from	0	(so	nthPrime(0)	returns	2).	A	prime	number	is	a	number	that	only	
has	two	factors:	itself	and	1.

First,	let's	understand	the	problem.

nthPrime(0)	=	2

nthPrime(1)	=	3

nthPrime(2)	=	5

nthPrime(3)	=	7

nthPrime(4)	=	11

nthPrime(-1)	=	not	allowed!

Exercise:	nthPrime
Next,	let's	devise	a	plan.

nthPrime	can	follow	a	common	pattern	we'll	see	on	this	class's	problems- nthItem.	This	function	
will	track	two	variables;	guess,	which	keeps	track	of	the	number	we're	currently	guessing,	and	
found,	which	keeps	track	of	how	many	numbers	we've	found	that	match	the	description.	We'll	
keep	looping,	updating	the	guess	number	each	time,	until	found	reaches	the	inputted	number.

nthPrime	will	use	a	helper	function,	isPrime,	which	will	tell	us	whether	a	given	number	is	prime.	
Here	we	can	use	the	definition	of	a	prime	number- it	must	only	have	1	and	itself	as	factors.	So	
we	can	check	all	the	intermediate	numbers to	see	if	any	of	them	are	factors	too;	if	none	are,	the	
number	is	prime.

Exercise:	nthPrime
Next,	we	carry	out	the	plan

Let's	code	isPrime	and	nthPrime	together!

Exercise:	nthPrime
Finally,	we	review	our	work.

Here	are	test	cases	based	on	our	input/output	pairs	from	before:

assert(nthPrime(0) == 2)

assert(nthPrime(1) == 3)

assert(nthPrime(2) == 5)

assert(nthPrime(3) == 7)

assert(nthPrime(4) == 11)

But	we	should	also	test	isPrime	to	make	sure	our	helper	function	is	working	first!

Testing
When	writing	test	functions,	we	need	to	cover	likely	cases	where	things	can	go	wrong.	If	we	
don't,	our	program	might	develop	a	bug	without	us	realizing!

In	particular,	you	should	always	try	to	cover:
◦ Normal	cases	– provided	and	obvious	examples
◦ Large	cases	– larger-than-usual	input
◦ Edge	cases	– pairs	of	input	that	result	in	opposite	choices	in	the	code
◦ Special	cases	– 0	and	1,	empty	string,	unexpected	types
◦ Varying	results	– make	sure	that	all	your	test	cases	don't	return	the	same	result!

Testing	isPrime
Think/Pair/Share:	Let's	come	up	with	test	cases	for	each	of	these	categories	for	isPrime.

Normal	case:

Large	case:

Edge	case:

Special	case:

Varying	results:

Debugging

Debugging
Debugging	is	the	process	of	determining	where your	code	is	not	working	correctly,	figuring	out	
why it	is	incorrect,	and	fixing the	error.

In	general,	while	debugging,	the	best	thing	you	can	do	is	read	the	error	messages	and	code	
carefully.	However,	different	errors	are	best	fixed	with	different	approaches.

Remember	the	three	types	of	errors	from	last	week:	syntax	errors,	semantic	errors,	and	logical	
errors.

Debugging	Syntax	Errors
When	your	program	encounters	a	syntax	error,	follow	the	following	steps:

1. Read	the	error	message	and	verify	that	this	is	a	SyntaxError.
2. Look	for	the	line	number	and	the	arrow	pointing	at	the	code	to	find	the	error's	location.
3. Carefully	read	the	line	of	code	to	find	the	incorrect	syntax.

Example:	Syntax	Debugging

1: x = 5

2: if x > 0

3: print("Positive")

4: else

5: print("Negative")

Debugging	Runtime	Errors
When	your	program	encounters	a	runtime	error,	follow	the	following	steps:

1. Read	the	error	message	and	identify	the	type	of	error.
2. Look	for	the	line	number,	go	to	that	line	of	code,	and	identify	which	part	might	be	

associated	with	the	error.
3. Use	print	statements	to	identify	what	the	code's	state	is	at	that	point	in	the	program,	and	

work	out	what	the	state	should	actually	be.
4. Identify	how	to	change	the	program	to	achieve	the	desired	state.

Example:	Runtime	Debugging

1: friend = "Stella"

2: for letter in freind:

3: print(letter + "!")

Debugging	Logical	Errors
When	your	program	encounters	a	logical	error,	follow	the	following	steps:

1. Don't	start	with	the	error	message,	it	won't	be	helpful.	Instead,	identify	the	input,	expected	output,	
and	actual	output	of	the	failing	test	case.

2. Make	sure	you	understand	why the	program	should	achieve	the	expected	output	on	the	given	
input.

3. Add	print	statements	to	your	code	at	important	junctures	to	visualize	the	program's	state	as	it	runs.
4. Compare	the	printed	state	to	the	expected	state,	find	where	the	two	diverge,	and	use	problem	

solving	to	determine	how	your	algorithm	needs	to	be	changed	to	fix	the	state.

Example:	Logical	Debugging
1: def containsUpper(s):

2: for c in s:

3: if "A" <= c <= "Z":

4: return True

5: else:

6: return False

7:

8: s = "hello Mr. Bond"

9: assert(containsUpper(s) == True)

Today's	Learning	Goals
Combine	blocks	of	code	to	create	complex	programs

Use	the	problem-solving	process	to	develop	solutions	to	new	problems

Use	testing	and	debugging	to	verify	that	our	programs	work

