
#5: Data Representation
SAMS PROGRAMMING C

Review from Last Week
Combine blocks of code to create complex programs

Use the problem-solving process to develop solutions to new problems

Use testing and debugging to verify that our programs work

Today's Learning Goals
Use indexing and slicing on strings while writing functions

Utilize lists as data structures when writing programs

Understand the difference between mutable and immutable datatypes

Storing Multiple Values
Let's say we want to keep track of the first 10 prime numbers. Right now, to do that, we need to
make ten different variables.

prime1 = 2

prime2 = 3

prime3 = 5

prime4 = 7

prime5 = 11

prime6 = 13

prime7 = 17

prime8 = 19

prime9 = 23

prime10 = 29

This feels similar to our argument about loops...

Storing multiple values in a list
Instead, let's condense those values down into a single object which we can iterate over to get
each individual prime

prime1to10 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

We call this data structure a list!

List syntax
Lists are denoted by square brackets, where values go inside the brackets (separated by
commas). Lists can hold as many values as they need to, or no values at all. Here's an example of
an empty list:

lst = []

And a list of strings:

strLst = ["Hello", "World!"]

List iteration
We can loop over lists the same way we loop over strings, by accessing each element in order
(like how we access each character in order):

lst = [2, 4, 6, 8]

for item in lst:

print(item)

But we can also do a lot more...

List Indexing
We can also index into a list to get a specific value. Each element of the list is assigned an index
based on its position, starting with 0. As computer scientists, we always start counting at 0!

Example: in the list ["a", "b", "c"]...

Index 0: "a"

Index 1: "b"

Index 2: "c"

List/String Indexing
To index into a list, we put square brackets after the list with the index number inside.

lst = ["a", "b", "c"]

print(lst[1]) # "b"

And guess what – we can do this with strings, too! After all, a string is just a 'list' of characters.

s = "abc"

print(s[1]) # "b"

Indexing examples
Question: how do we get the first character of a string s?

Answer: s[0]

Question: how do we get the last item in a list lst?

Answer: lst[len(lst)-1] OR lst[-1]

That's right- we can index with negative numbers! This just wraps around the back of the
list/string.

Indexing Quiz
Given the list ["a", "b", "c", 1, 2, 3], what is the index of...

"b"?

1?

3?

List/String Slicing
We can also get a whole subset of a list or string by specifying a slice.

Slices are exactly like ranges- they can have a start point, end point, and step. But slices are
represented as numbers inside of square brackets, separated by colons.

lst = [0, 2, 4, 6, 8]

print(lst[2:len(lst):1]) # print [4, 6, 8]

print(lst[0:len(lst)-1:1]) # prints [0, 2, 4, 6]

print(lst[0:len(lst):2]) # prints [0, 4, 8]

List/String Slicing Shorthand
We can leave the start, end, and step entries blank if we're using the default values.

lst[:] and lst[::] are both the list itself, unchanged

s[1:] is the string without the first character

lst[:-1] is the list without the last character

s[::3] is the string with every third character

Slicing Example
Given the string "abcdefghij", what slice would we need to get the string "cf"?

Lists vs. Strings: types
So far, lists and strings seem fairly similar. However, they do have two major differences.

First: strings can only hold characters. Lists, on the other hand, can hold any type of data. They
can even mix those types up!

lst = [0, "a", True, None]

print(lst)

Lists vs. Strings: mutability
Second, lists can be changed directly (they are mutable), while strings are static and cannot be
changed (they are immutable). For lists, this means we can use indexing and/or slicing to update
the lists as needed:

lst = ["Carnegie", "Mellon", "University"]

lst[2] = "Rocks!"

print(lst)

lst[-1:] = ["My!", "Socks!"]

print(lst)

String are Immutable
If we try to change the characters inside a string directly, we'll have a bad time

s = "Carnegie Mellon"

s[1] = "@" # uh oh!

print(s)

However, we can still overwrite the string as a whole by changing the variable's value. This
makes a brand new string.

s = "Carnegie Mellon"

s = s[0] + "@" + s[2:] # this is okay!

print(s)

New operation: in
When we have an iterable type (like a list or a string), we can use the in operator to check if a
value occurs in the list/string.

"a" in "apple" # True!

4 in [1,2,3,4,5] # True!

"z" in "potato" # False!

For strings only, we can actually check if several characters in a row appear in the string...

"erdu" in "superduper" # True!

String Example
Example: write the function longestCommonSubstring(s, t) that takes two strings, s and
t, and returns the longest substring which both strings have in common.

Useful String Functions
There is a whole library of string functions that have already been written: you can find them at

https://docs.python.org/3.6/library/stdtypes.html#string-methods

We'll go over a few of these in a minute..

There are also some useful built-in string constants, found at:

https://docs.python.org/3.6/library/string.html#string-constants

To use these, you need to import string

import string

s = "A"

print(s in string.ascii_letters)

https://docs.python.org/3.6/library/stdtypes.html#string-methods
https://docs.python.org/3.6/library/string.html#string-constants

Using string methods
String methods work differently from built-in functions. Instead of writing:

isdigit(s)

we have to write:

s.isdigit()

Also: because strings are immutable, these methods don't change the string! They return a
new string, so you need to capture the result and use it.

String functions: find
If we want to determine where a character occurs in a string, we use the built-in method find.
This returns the index of the first appearance of the character, or -1 if it isn't in the string.

s = "abcde"

print(s.find("c")) # 2

print(s.find("z")) # -1

String functions: replace
replace works the same way it does in the text editor; it replaces all occurrences of the first
parameter with the second one.

s = "football gooooooal!"

print(s.replace("oo", "8")) # f8tball g888al!"

print(s) # remember, s itself doesn't change!

String functions: split
If you need to break a string into multiple parts, use split. The function takes a delimiter (the
separating character(s)) and returns a list of the separate string parts. The delimiter can be
anything you want...

s = "Monday,Tuesday,Thursday"

print(s.split(",")) # ["Monday", "Tuesday", "Thursday"]

s = s.replace(",", "!")

print(s) # "Monday!Tuesday!Thursday"

print(s.split("day!")) # ["Mon", "Tues", "Thursday"]

String functions: strip
If you need to remove extra whitespace from the beginning or end of a string, you can use strip.
Whitespace includes spaces, newlines, and tabs.

s = " Testing: 1, 2, 3 "

print("(", s.strip(), ")", sep="") # "(Testing: 1, 2, 3)"

List Methods
There is a whole library of list methods that have already been written: you can find them at

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

We'll go over a few of these now!

Note that list functions are also called directly on the list:

lst = [1, 2, 3]

lst.append(4)

https://docs.python.org/3/tutorial/datastructures.html#more-on-lists

List functions: append, extend, and insert
When we want to add more elements into a list, we can use several functions. First, append lets
us add a single element to the end of the list. Second, extend lets us add a list of elements to
the end of the list. Finally, insert lets us place a specific element into a specific location, moving
the rest of the elements back.

lst = [1, 2, 3]

lst.append(4)

print(lst) # [1, 2, 3, 4]

lst.extend([5, 6])

print(lst) # [1, 2, 3, 4, 5, 6]

lst.insert(0, -5)

print(lst) # [-5, 1, 2, 3, 4, 5, 6]

List functions: pop and remove
When you want to remove something from a list, you can use one of two different functions.
pop lets you remove the element at the provided index (or the element at the end if no index is
provided); remove gets rid of the first occurrence of the provided element.

lst = ["a", "b", "c", "d", "e"]

lst.pop(1)

print(lst) # ["a", "c", "d", "e"]

lst.remove("d")

print(lst) # ["a", "c", "e"]

List functions: index
To find the location of an element in a list, use the function index. NOTE: index will crash if the
element is not in the list! Check with 'in' first to make sure the element is in there.

lst = ["a", "b", "c"]

print(lst.index("b")) # 1

List functions: count
To determine how many times an element occurs in a list, use the count function!

lst = [1, 2, 3, 1, 2, 1]

print(lst.count(1)) # 3

Example
Example: write the function solvesCryptarithm(puzzle, solution), which returns
True if the string solution represents a valid solution to the puzzle string, and False otherwise.

Read more about cryptarithms and the problem here:

https://www.cs.cmu.edu/~112/notes/colab4.html

https://www.cs.cmu.edu/~112/notes/colab4.html

Today's Learning Goals
Use indexing and slicing on strings while writing functions

Utilize lists as data structures when writing programs

Understand the difference between mutable and immutable datatypes

