
#7: Producing Output
SAMS PROGRAMMING C

Housekeeping
Quiz1 Grading – partial credit, median 100, average 76.7

Overall Grade Calculation – hw1 + hw2 + hw3 + hw4 + hw5 + 2*quiz1 + 2*quiz2
◦ participation used in edge cases

Reminder: hard coding test cases is not allowed, and will not receive any points!

Also: you must write all of your own code on the homeworks! Collaboration is okay, but writing
code for someone else or accepting someone else's code is not.

Finally: it's okay if you sometimes can't finish all the problems on a homework or quiz! Just do
your best and submit whatever you get done. We're here to learn, not to score perfect grades.

Review from Last Week
Use indexing and slicing on strings while writing functions

Utilize lists as data structures when writing programs

Understand the difference between mutable and immutable datatypes

Today's Learning Goals
Understand how aliasing works with lists and other mutable objects

Build lists of multiple dimensions

Use the tkinter library to build graphics in Python

More About Lists

Reminder: Lists are Mutable
Last week, we learned that lists are mutable- the values in them can be changed directly.

This is possible because we aren't actually storing the list value directly inside its variable.
Instead, the variable contains a reference to the list. We can change the list while leaving the
reference the same.

This is why we can call lst.append(item) without needing to set the call equal to a value!

Side Effects...
The mutable nature of lists has an important side effect- copying variables works differently
than with non-mutable values.

Normally, if I make a copy of a string or number, the copy is disconnected from the original
value:

a = "foo"

b = a

a = a + "foo"

print(a, b)

Side Effects...
The mutable nature of lists has an important side effect- copying variables works differently
than with non-mutable values.

But if I copy a list, we'll get an unexpected result...

a = [1, 2, 3]

b = a

a.append(4)

print(a, b)

Aliasing
List copying is broken because our variables are aliased. They both store the same reference,
where each reference points to the same list. Changing the list doesn't change the reference.

We can make what's going on clearer by visualizing the code's execution.

Example here: https://goo.gl/aZwfcW

https://goo.gl/aZwfcW

Exercise: Aliasing
Predict what the following code will print. When we run the code, check your results.

x = ["a", "b", "c"]

y = x

s = "foo"

x.append(s)

s = s + "bar"

print("x", x)

print("y", y)

print("s", s)

Function Call Aliasing
When we call a list in a function, the parameter is an alias of the originally provided list. This lets
us write functions that are destructive- they change the provided value instead of returning.

def doubleValues(lst):

for i in range(len(lst)):

lst[i] = lst[i] * 2

a = [1, 2, 3]

print("before", a)

print("result", doubleValues(a))

print("after", a)

Destructive vs. Non-Destructive
If we want to make a list function that is non-destructive, we make and return a new list instead.

def doubleValues(lst):

result = []

for i in range(len(lst)):

result.append(lst[i] * 2)

return result

a = [1, 2, 3]

print("before", a)

print("result", doubleValues(a))

print("after", a)

Built-in Functions
Built-in list functions can be destructive or nondestructive.

Need to add a single element?

lst.append(item) is destructive; lst = lst + [item] is non-destructive.

Need to remove the last element?

lst.pop() is destructive; lst = lst[:-1] is non-destructive.

If you aren't sure whether a function is destructive or nondestructive, pay attention to whether
it changes the list and whether it requires an assignment.

Exercise: Lists in Functions
We want to write a function replace(lst, oldItem, newItem) that replaces all instances
of oldItem in the list with newItem.

How would we implement this function destructively?

How would we implement it non-destructively?

Multi-dimensional Lists
Reminder: lists can hold any type of data. That includes more lists!

We often talk about creating two-dimensional lists. These are just lists that contain one-
dimensional (regular) lists. They're useful for storing information that comes in grids (think
pixels, game boards, spreadsheets...)

grid = [["city", "state"],

["Pittsburgh", "PA"],

["Baltimore", "MD"],

["New Orleans", "LA"]]

2D List Indexing
When indexing into a multi-dimensional list, you index from the outside in.

With 2D lists, we refer to rows (the inner lists) and columns (the indices within the list). This lets
us treat 2D lists like data tables.

lst = [["row 0 col 0", "row 0 col 1"],

["row 1 col 0", "row 1 col 1"]]

print(lst[1]) # ["row 1 col 0", "row 1 col 1"]

print(lst[1][0]) # "row 1 col 0"

2D List Iteration
Likewise, when iterating over a multi-dimensional list, we use multiple nested loops. For 2D
lists, we first iterate over the rows (the inner lists), then the columns (the elements).

lst = [["a", "b"], ["c", "d"]]

for row in range(len(lst)):

for col in range(len(lst[row])):

print(lst[row][col])

Exercise: 2D Lists
We want to write a function that takes a 2D list of one-character strings and a word, and returns
the [row, col] index of the starting character of the word if that word can be found in an adjacent
string of characters in the list, or None otherwise.

Basically, we want to write a word search solver!

https://thewordsearch.com/

Testing wordSearch
def testWordSearch():

board = [['d', 'o', 'g'],

['t', 'a', 'c'],

['o', 'a', 't'],

['u', 'r', 'k']]

print(wordSearch(board, "dog")) # [0, 0]

print(wordSearch(board, "cat")) # [1, 2]

print(wordSearch(board, "tad")) # [2, 2]

print(wordSearch(board, "cow")) # None

Graphics!

Tkinter Canvas
In Python, we can draw graphics on the screen using many different modules. We'll use Tkinter
in class because it's built-in, but there are other options for outside of class (turtle, pygame,
Panda3D...)

Tkinter creates a new window on the screen and puts a Canvas into that window. We'll call
methods on that canvas in order to draw on it.

NOTE: Tkinter will not work on most online editors. You'll need to run it locally on the computer.

NOTE 2: Tkinter documentation can be found at
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas.html

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas.html

Tkinter starter code
from tkinter import *

def draw(canvas, width, height):

pass # replace with your drawing code!

def runDrawing(width=300, height=300):

root = Tk()

canvas = Canvas(root, width=width, height=height)

canvas.configure(bd=0, highlightthickness=0)

canvas.pack()

draw(canvas, width, height)

root.mainloop()

print("bye!")

runDrawing(400, 200)

Coordinates on the Canvas
You can think of the canvas (or any image) as a 2D grid of pixels, where each pixel can be filled
with a dot of color. This grid has a pre-set width and height; the number of pixels from left to
right and the number of pixels from top to bottom.

We can refer to pixels on the canvas by their (x, y) coordinates. However, these coordinates are
different from coordinates on normal graphs- they start at the top left corner of the canvas.

(0, 0) (width, 0)

(0, height) (width, height)

canvas

Drawing a rectangle
To draw a rectangle, we use the method create_rectangle. This method takes four required
parameters: the x and y coordinates of the top-left corner, and the x and y coordinates of the
bottom-right corner. The rectangle will then be drawn between those two points.

canvas.create_rectangle(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)

Changing the rectangle
We can also add many optional parameters to the rectangle method to change the rectangle's
appearance. You can include as many as you want- just put them after the coordinates.

canvas.create_rectangle(10, 50, 110, 100, fill="yellow") # makes rectangle yellow

canvas.create_rectangle(10, 50, 110, 100, outline="red") # makes border red

canvas.create_rectangle(10, 50, 110, 100, width=5) # makes border 5 pixels wide

canvas.create_rectangle(10, 50, 110, 100, width=0) # removes border

Drawing multiple shapes
If we draw more than one shape, the shapes can overlap! Shapes which are drawn later are
drawn on top.

def draw(canvas, width, height):

canvas.create_rectangle(0, 0, 150, 150, fill="yellow")

canvas.create_rectangle(100, 50, 250, 100, fill="orange", width=5)

canvas.create_rectangle(50, 100, 150, 200, fill="green",

outline="red", width=3)

canvas.create_rectangle(125, 25, 175, 190, fill="purple", width=0)

Calculating the center
Often we want to draw shapes based on a center point, a shape width, and a shape height.

To do this, we need to calculate the left, top, right, and bottom coordinates using this
information.

(x, y)

w

h

(x – w/2, y – h/2) (x + w/2, y – h/2)

(x – w/2, y + h/2) (x + w/2, y + h/2)

centerX, centerY = 200, 200

rectWidth, rectHeight = 300, 80

left = centerX - rectWidth/2

top = centerY - rectHeight/2

right = centerX + rectWidth/2

bottom = centerY + rectHeight/2

canvas.create_rectangle(left, top, right, bottom)

Adjusting Size Based on Window Size
We know the window's height and width in draw() (as they are provided as parameters), so we
can draw objects proportionally to the window, so they resize appropriately.

def draw(canvas, width, height, img):

squareSize = min(width, height)

canvas.create_rectangle(width/2 - squareSize/2,

height/2 - squareSize/2,

width/2 + squareSize/2,

height/2 + squareSize/2,

fill="red")

Drawing an oval
Of course, we can draw more shapes than just rectangles. First, to draw an oval, use
create_oval. This function uses the same parameters as create_rectangle, where the
coordinates mark the oval's bounding box. create_oval has the same optional parameters as
create_rectangle.

canvas.create_oval(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)

Drawing a polygon
To draw a polygon with create_polygon, we specify the coordinates of each of the polygon's
points, in perimeter order. The polygon can have as many points as needed, but will need at
least three points to appear.

canvas.create_polygon(10, 10, 50, 150, 100, 50)

You can use the normal optional parameters with polygons, and you can also create a cool
curved shape by setting smooth=1.

canvas.create_polygon(10, 10, 50, 150, 100, 50, smooth=1)

Drawing a line
Drawing a line with create_line is like drawing a polygon- include the coordinate for each point
on the line where the direction changes. However, lines are allowed to only have two points.

canvas.create_line(10, 50, 200, 150, fill="blue")

canvas.create_line(10, 10, 50, 150, 100, 50, fill="red")

Lines can also be smoothed (though you should use create_arc to draw arcs), but do not have an
outline color. Lines can also be given an arrow on the first point (arrow=FIRST), last point
(arrow=LAST), or both (arrow=BOTH).

canvas.create_line(10, 50, 200, 150, arrow=BOTH)

Drawing text
To write text in the canvas, we use create_text. This takes the x, y coordinate of the center point of the
text and can have the following optional parameters:

canvas.create_text(100, 100, text="Hello World!") # the text to be displayed. Not really optional...

canvas.create_text(100, 100, text="Hello World!", fill="red") # text color

canvas.create_text(100, 100, text="Hello World!", font="Arial 30 bold") # text font, size, and type

canvas.create_text(100, 100, text="Hello World!", anchor=NW) # anchors are used to specify where the

coordinate is w.r.t the text. The default is CENTER; you can also use NW, N, NE, E, SE, S, SW, W

canvas.create_text(100, 100, text="Hello World!", width=50) # by default, text is all on one line.

If width is set, the text length will be restricted & will automatically break into multiple lines.

Drawing images
If we want to use a pre-made image in Tkinter, we can load one in as a PhotoImage. This can be
created with:

img = PhotoImage(file="sample.gif")

We can resize the image if needed, using subsample to make it smaller and zoom to make it bigger.

img = img.subsample(5) # make the image 5 times smaller

img = img.zoom(2) # make the image twice as large

Unfortunately, PhotoImages can only be .pgm, .ppm, and .gif files. For more filetypes, use the
external module PIL.

http://www.pythonware.com/products/pil/

Drawing images
Once you've created an image, you can draw it with create_image. This method takes the x, y
coordinates of the image and can have other optional parameters...

the image to be displayed. not really optional...

canvas.create_image(200, 100, image=imageVar)

the anchor point of the coordinate. Same as for text, default CENTER

canvas.create_image(200, 100, anchor=N)

NOTE: images take a while to load, so they must be created in the runDrawing function, not in
draw(). They should be initialized after root=Tk() but before draw().

Problem-solving with Graphics
Now we have all the building blocks we need to make cool images!

Let's start by drawing flags: http://flagpedia.net/

http://flagpedia.net/

Today's Learning Goals
Understand how aliasing works with lists and other mutable objects

Build lists of multiple dimensions

Use the tkinter library to build graphics in Python

