
#9: Interactive
Applications
SAMS PROGRAMMING C

Review from Last Week
Understand how aliasing works with lists and other mutable objects

Build lists of multiple dimensions

Use the tkinter library to build graphics in Python

Today's Learning Goals
Create interactive programs with input/output streams and files

Create interactive graphic programs with keyboard and mouse events

Create animations with time-based events

Input & Output
When we interact with a computer, we provide the computer with input, and it responds with
output.

This input-output cycle is at the center of all interactive applications. The application must be
able to process and respond to human input, just as human users must be able to understand
and respond to computer output.

Computer Output
We've already used one mode of computer output: we've had the computer print values to the
screen.

print() sends information to sys.stdout (system standard out). This shows up in the
interpreter in Pyzo.

Computer Input
So far, to provide input, we've directly typed values into the interpreter or into our files. But we
can ask for input during programs as well...

result = input(message) displays the given message, then waits for the user to type a
response. When the user presses Enter, the typed message is stored as a string in result.

name = input("Who are you?")

print("Hello " + name + "!")

Files as Input/Output
We can also process input and output using files on the computer! Specifically, we can read text
from files and write text back into them. First, we need to create a File object. We do this using
the open command.

f = open(filename, mode)

When we're done with a file, remember to always close it! Otherwise, we won't be able to open
it again later!

f.close()

Reading/Writing From Files
When opening a file object, if we set the mode to "r" (read), we can read text from it; if we set it
to "w" (write), we can write text to it.

f = open(filename, "r")

text = f.read()

f.close()

f = open(filename, "w")

f.write(text)

f.close()

Managing errors
When we start allowing users to input values, we can get errors that are the user's fault, not
ours. To handle possible user error, we use error-catching with try and except.

try:

<possible breaking code>

except:

<what to do if the code breaks>

Error Catching Example
Say we want to write a program that multiplies the inputted number by 2. We need to make
sure to handle the case where the user gives us a non-number!

try:

result = int(input("Enter a number: "))

print("Answer: ", result * 2)

except:

print("You have to enter a number!")

Adding some randomness...
Finally, it can be helpful to allow for some random behavior when making applications
interactive. We can approximate randomness using the random library.

https://docs.python.org/3.6/library/random.html

To choose a random number in the range [x, y]:

num = random.randint(x, y)

To select a random element from a list lst:

item = random.choice(lst)

https://docs.python.org/3.6/library/random.html

Example
Let's program an interactive guessing game!

Interactive Graphics
Just as we can make interactive text applications, we can also make interactive graphic
applications!

We primarily interact with graphical applications using the mouse/trackpad and the keyboard.

New Graphics Starter Code
See https://www.cs.cmu.edu/~112/notes/notes-animations-part2.html#starter-code

Note: you won't be responsible for the run() function. That's just setting everything up for you.

https://www.cs.cmu.edu/~112/notes/notes-animations-part2.html#starter-code

Storing information in data
First, note that draw() has been replaced by redrawAll. Instead of being called once, redrawAll
will be called over and over again, replacing the picture on the canvas each time it is called.

Instead of width and height, we're given data. data will store all the information we need to
access in the graphic. In fact, it already stores the width and the height!

print(data.width, data.height)

To add new information to data, we just say:

data.varName = value

Handling Mouse events
A mouse event involves two pieces of information: the x and y coordinates where the
mouse/trackpad was clicked on the canvas.

That information is passed along in the event parameter, as event.x and event.y.

print(event.x, event.y)

We can store that information in data to modify things in redrawAll!

Storing values over time
When we want to update a value in an interactive graphic over time, we have to give that
variable an initial value. This is done in the init function, which is called just once, at the very
beginning.

Note: to keep track of variables, they have to be stored in data! Otherwise, they're just local
variables!

Example: moving a circle
def init(data):

data.currentX = data.width/2

data.currentY = data.height/2

def mousePressed(event, data):

data.currentX = event.x

data.currentY = event.y

def redrawAll(canvas, data):

canvas.create_oval(data.currentX - 50, data.currentY - 50,

data.currentX + 50, data.currentY + 50,

fill="lavender")

Example: clicking a button
def init(data):

data.buttonX, data.buttonY = data.width/2, data.height/2

data.buttonSize = 50

data.buttonClicked = False

def mousePressed(event, data):

if (data.buttonX - data.buttonSize <= event.x <= data.buttonX + data.buttonSize) and \

(data.buttonY - data.buttonSize <= event.y <= data.buttonY + data.buttonSize):

data.buttonClicked = not data.buttonClicked

def redrawAll(canvas, data):

color = "purple" if data.buttonClicked else "gray"

canvas.create_rectangle(data.buttonX - data.buttonSize, data.buttonY - data.buttonSize,

data.buttonX + data.buttonSize, data.buttonY + data.buttonSize,

fill=color)

Handling Keyboard events
A keyboard event involves one piece of information: which key is typed.

We can get that key as a single character with event.char. Some keys don't have single-character
representations, though; for those, we can find special representations in event.keysym.

print(event.char, event.keysym)

Example: displaying typed characters
def init(data):

data.curChar = ""

data.curKeysym = ""

def keyPressed(event, data):

data.curChar = event.char

data.curKeysym = event.keysym

def redrawAll(canvas, data):

canvas.create_text(data.width/2, data.height/2, font="Arial 32 bold",

text=data.curChar + "\n" + data.curKeysym)

Example: moving with arrow keys
def init(data):

data.circleX = data.width/2

data.circleY = data.height/2

def keyPressed(event, data):

if event.keysym == "Up": data.circleY -= 20

elif event.keysym == "Down": data.circleY += 20

elif event.keysym == "Left": data.circleX -= 20

elif event.keysym == "Right": data.circleX += 20

def redrawAll(canvas, data):

canvas.create_oval(data.circleX - 50, data.circleY - 50,

data.circleX + 50, data.circleY + 50, fill="salmon")

Animation: Changing Data Over Time
Animation is the process of making graphics look like they are moving by changing them slightly
as time passes. We can create animations in tkinter too!

We simulate time passing using timerFired. This function only takes one parameter, data. It gets
called every data.timerDelay milliseconds; by changing data in timerFired, we can make the data
change continuously over time!

Example: tracking time passed
def init(data):

data.timerDelay = 1000 # one second
data.timeCount = 0

def keyPressed(event, data):
if event.keysym == "Up": data.timerDelay *= 2
elif event.keysym == "Down": data.timerDelay //= 2

def timerFired(data):
data.timeCount += 1

def redrawAll(canvas, data):
s = "Time Passed: " + str(data.timeCount) + "\n" + \

"timerDelay: " + str(data.timerDelay)
canvas.create_text(data.width/2, data.height/2, font="Arial 32 bold", text=s)

Example: moving shape
def init(data):

data.boxXSpeed = 10

data.boxX = 10

data.boxY = data.height/2

def timerFired(data):

data.boxX += data.boxXSpeed

def redrawAll(canvas, data):

canvas.create_rectangle(data.boxX - 20, data.boxY - 20,

data.boxX + 20, data.boxY + 20, fill="green")

Putting it all together
To make a full interactive application or game, we just need to combine all the necessary
functions and data!

In these applications and games, we'll often need to store game state in data. This will let us
keep track of what's currently going on behind the scenes.

Note: never modify the game state in redrawAll! This can lead to nasty, unexpected behaviors.
Only modify state in init, keyPressed, mousePressed, and timerFired.

Example: Memory Game
Let's program a memory game!

Game state: a 2D list holding the values of the cards, a 1D list holding (row, col) indices of cards
that have been flipped, and a timer.

Events: clicking to flip a card, pairs of cards flipping back over after time has passed.

Display: all of the cards, either showing their value or grayed out.

Today's Learning Goals
Create interactive programs with input/output streams

Create interactive graphic programs with keyboard and mouse events

Create animations with time-based events

