
#1: Data, Variables, and
Functions
SAMS SENIOR CS TRACK

Course Logistics
Course Goals

Course Website: http://krivers.net/SAMS-m19/

Staff & Student Introductions

http://krivers.net/SAMS-m19/

Course Plan
Schedule here: http://www.krivers.net/SAMS-m19/schedule_seniorA.html

Mondays, Tuesdays, and Thursdays will be used for lecture

Wednesdays and Fridays will be used as lab/homework time

Week 1: Building Blocks

Week 2: Control Flow

Week 3: Data Structures

Week 4: Interaction

Week 5: Application

Week 6: Computer Science

http://www.krivers.net/SAMS-m19/schedule_seniorA.html

Advanced Topics
We'll have additional materials on Advanced CS topics available each week, combined with a bonus
problem on the homework.

This is recommended for students who are already familiar with Python, and available to any
interested students.

Week 1: Language Types

Week 2: Recursion

Week 3: Dictionaries, Trees, and Graphs

Week 4: User Interfaces and File I/O

Week 5: Python Modules

Succeeding in this Course
You will be evaluated based on class participation, homeworks, and quizzes

Participation means attending class each day and staying involved in class discussion/activities.

Homeworks are assigned each Monday and due each Friday at noon. You may work on the
homeworks during lab time or on your own time. You may collaborate on homeworks, but must
write your own code yourself- no copying! Homeworks should be submitted on Autolab.

Quizzes will occur in week4 and week6, and will involve solving problems in lab individually.

Need help? Come to office hours! They occur on M/T/W/Th from 12-1pm (GHC 4109) and from
6:30-8:30pm (Gates 5th floor teaching commons).

Things You'll Need
Python 3: https://www.python.org/

Pyzo: http://www.pyzo.org/ (or another IDE of your choice)

Both can be found on CMU cluster computers if you don't have a laptop.

https://www.python.org/
http://www.pyzo.org/

Today's Learning Goals
Understand what a programming language is

Use numbers, text, and boolean values in simple expressions

Write code that stores data using variables and functions

Programming

Programming: How We Talk to Computers
We know how to give instructions to other human beings- we just tell them what they need to do,
step by step. We do this all the time with recipes.

However, writing a recipe can be difficult. Can you assume someone knows how to grease a pan?
What does it mean to salt something 'to taste'?

Writing a program for a computer is like writing a recipe for someone who is new to cooking. Each
step needs to be specified precisely, with no ambiguity.

This means we can't communicate with a computer using natural language, as natural language is full
of ambiguities! Instead, we use a specially-created language that the computer understands.

https://www.allrecipes.com/recipe/10549/best-brownies/

Calculator Instructions
What happens when I type this into a calculator?

4 + 16 / 2

The calculator knows rules for how to parse and evaluate mathematical expressions

A programming language like Python is like a calculator, except that it can handle much more
complex instructions

Editor vs. Interpreter
A program editor is just a text editor that lets you write programs, save them to files, and run
them.

An interpreter is the place where the program is actually parsed and evaluated. In Python, we
can choose to write code directly in the interpreter.

We generally use the interpreter when experimenting and the editor when writing code we
want to save or run multiple times.

Data and Operations

Python Math
Python knows how to do all of the math that a calculator can do.

Examples:

4 + 16 / 2

(5 - 1) * 2

Advanced Math Operations
5 ** 3

(pow) means 'raise 5 to the power of 3'

5 // 3

(div) means 'divide 5 by 3 and cut off the fractional part'. Use it for step functions.

5 % 3

(mod) means 'find the remainder of 5 divided by 3'. Use it for repeating functions.

Text in Python
We can also show the user text using Python. Text is represented using either double quotes
("foo") or single quotes ('foo').

The print() command is a built-in action that prints to the interpreter whatever is inside the
parentheses. We'll need it to display results when we aren't working directly in the interpreter

Examples:

print("Hello World!")

print(4 + 5)

print('Hi ' + 'mom')

Printing multiple things
If we want to print multiple values on the same line, we can separate the values with commas.
The values will be printed out separated by spaces.

Example:

print("try", "it", "out")

Python Types
Programming languages deal with multiple data types which interact in different ways. Numbers
can be int or float types, where ints are integers and floats are decimal (floating point) numbers.
Text is a str type, short for string (because text is a 'string' of characters).

We can turn numbers into text and text into numbers by using built-in type-casting functions.
type() can be used to find the type of a general value.

Examples:

str(4)

int("8")

type("foo")

Sidebar - Python Errors
Unlike humans, computers aren't good at improvising. If a single part of a program is written
incorrectly, Python won't know what to do. In these situations, Python will show you an error
message.

A large part of learning how to program involves learning how to read error messages and fix
'bugs' (problems) in the code.

Fun fact: the first program
bugs were often actual bugs!

https://cdn0.tnwcdn.com/wp-content/blogs.dir/1/files/2013/09/bug.jpg

Syntax Errors
First, syntax errors can occur when Python can't parse the code it is given. The code will not run
until the syntax errors are all fixed.

Examples:

four plus six divided by two

print 'Hello World'

(((5 + 2) * (3 - 4))

Runtime Errors
Second, runtime errors are errors that Python throws while it is running the code. These
generally depend on the values that are being computed. Python code will run until a runtime
error is reached.

Examples:

3 / (5 - 6 + 1)

print("2 + 4 = " + 6)

int('four')

Logical Errors
Finally, logical errors occur when the code appears to run correctly but gives an incorrect result.
These are the most dangerous errors, because Python won't warn you about them!

Example:

print("2 + 4 = 7")

Sidebar - Annotating Code
As we start writing code, we might want a way to add notes to our code that explain what we're
doing.

You can add comments to Python code by starting a line with the symbol #. Python will ignore
anything that follows this character on the same line.

Examples:

This won't do anything!

4 + 5 # The rest will be ignored

Python True/False
We can also compare values in Python and evaluate these comparisons as True or False. True
and False are bool types, which is short for Boolean (named after mathematician George Boole).

Examples:

4 < 5

17 == 19

"orange" >= "apple"

Combining Booleans
Finally, we can combine these boolean values using logical operations.

Examples:

(21 > 15) and (15 > 5)

(type(4.5) == int) or (type(4.5) == float)

not ("apple" == "orange")

Note: comparing floats is dangerous!
Floats don't always behave properly during calculation and comparison...

Examples:

(3 + 3 + 3) == 9

(0.3 + 0.3 + 0.3) == 0.9

To fix this, check if the values are almost equal. We can use the built-in absolute value function
for this.

abs((0.3 + 0.3 + 0.3) - 0.9) <= 0.001

Variables and Functions

Storing Data in Variables
Right now, we have no way to store information for use in later expressions. To do this, we have
to use variables.

A variable is a name that can store a piece of data. The name can be used anywhere where the
data would be used normally. We create a variable with the syntax:

<varName> = <expression>

Example:

money = 1.75

quarters = money / 0.25

Note: variables can change!
Unlike variables in math, programming variables can change in value during the course of a
program.

Prediction Exercise: what value will x hold after each step of the following program?

x = 5

y = x * 5

x = y + 3

Storing actions in Functions
If we want to reuse a section of code on several different inputs, we can store that code in a
function.

A function has a name, a set of actions (its body), an input (its variable parameters), and an
output (the returned value).

Functions can be defined in code, and they can also be called in code.

Defining a Function
When we define a function, we specify how it should work on an abstracted input. Defining a
function is a bit more complex than the syntax we've learned so far.

def <functionName>(<parameters>):

<functionBody>

return <functionResult>

Note that the function body and return statement are indented. Python uses indentation to
specify when one or more lines of code should be considered a 'block'. In this case, indentation
separates the code that is considered part of the function from any code that follows it.

Defining a Function: Example
Say we want to define a function that converts money into a number of quarters. Our function
components are:

Name: convertToQuarters

Parameter: money

Body: numQuarters = money / 0.25

Result: return numQuarters

def convertToQuarters(money):

numQuarters = money / 0.25

return numQuarters

Another Type: None
What happens if we don't put a return statement in a function? The function will then return
nothing- or, more specifically, the None value.

None is a unique built-in value. We can use it to tell the user that there is no viable result.

def double(x):

if type(x) == int:

return 2 * x

print("double(3):", double(3))

print("double('foo!'):", double('foo!'))

Calling a function
Once we have defined a function in a file, we can call it on specific arguments to run the code
inside the function.

Example:

Assume I have $8.25

print("I have", convertToQuarters(8.25), "quarters")

Python will process our code in the convertToQuarters definition using the value 8.25. The
number returned by the return statement will then be substituted into the location of the
function call.

Functions have a different scope
When we define variables inside a function, they only exist inside the function. We can't call
them in the main code body.

Example:

def convertToQuarters(money):

numQuarters = money / 0.25

return numQuarters

print(numQuarters * 4) # will crash

Built-in Functions
Python has many functions that are already built into the language. We've seen print and abs, and
the type-casting functions. Other useful functions include:

len(s) # finds the number of characters in a string

max(4, 6, 2) # finds the maximum of a set of values

min(3, 9, -5) # finds the minimum of a set of values

round(3.14159, 2) # rounds the first number to the second number of digits

Importing Modules
Python also has many functions past the built-in ones. These extra functions are organized into
different modules, which need to be imported to be used. Imported functions can then be
called with:

import <moduleName>

<moduleName>.<functionName>(arguments)

Example:

import math

print("5! =", math.factorial(5))

Exercise: Let's Write a Program
Write a function makes10 that takes two numbers, x and y, and returns True if either the
difference between the numbers or the sum of the numbers is equal to 10.

Today's Learning Goals
Understand what a programming language is

Use numbers, text, and boolean values in simple expressions

Write code that stores data using variables and functions

Programming Pretest
Please fill out the pretest at this link: http://bit.ly/sams19-pretest

Don't worry if you can't answer some of the questions! This is just to help us understand what
you already know.

When you're done, you can head out to lunch.

http://bit.ly/sams19-pretest

