
#2: Graphics and 
Algorithmic Thinking
SAMS SENIOR CS TRACK



Last time
Learned what programming is

Used data values, variables, and functions to build programs



Today's Learning Goals
Use the tkinter library to construct graphics with programming

Solve unfamiliar problems using algorithmic thinking



Graphics!



Tkinter Canvas
In Python, we can draw graphics on the screen using many different modules. We'll use Tkinter
in class because it's built-in, but there are other options for outside of class (turtle, pygame, 
Panda3D...)

Tkinter creates a new window on the screen and puts a canvas into that window. We'll call 
methods on that canvas in order to draw on it.

NOTE: Tkinter will not work on most online editors. You'll need to run it locally on the computer.

NOTE 2: Tkinter documentation can be found at 
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas.html

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas.html


Tkinter starter code
from tkinter import *

def draw(canvas, width, height):

pass # replace with your drawing code!

def runDrawing(width=300, height=300):

root = Tk()

root.resizable(width=False, height=False) # prevents resizing window

canvas = Canvas(root, width=width, height=height)

canvas.configure(bd=0, highlightthickness=0)

canvas.pack()

draw(canvas, width, height)

root.mainloop()

print("bye!")

runDrawing(400, 200)



Coordinates on the Canvas
You can think of the canvas (or any image) as a two-dimensional grid of pixels, where each pixel 
can be filled with a dot of color. This grid has a pre-set width and height; the number of pixels 
from left to right and the number of pixels from top to bottom.

We can refer to pixels on the canvas by their (x, y) coordinates. However, these coordinates are 
different from coordinates on normal graphs- they start at the top left corner of the canvas.

(0, 0) (width, 0)

(0, height) (width, height)

canvas



Drawing a rectangle
To draw a rectangle, we use the method create_rectangle. This method takes four required 
parameters: the x and y coordinates of the top-left corner, and the x and y coordinates of the 
bottom-right corner. The rectangle will then be drawn between those two points.

canvas.create_rectangle(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)



Changing the rectangle
We can also add many optional parameters to the rectangle method to change the rectangle's 
appearance. You can include as many as you want- just put them after the coordinates.

canvas.create_rectangle(10, 50, 110, 100, fill="yellow") # makes rectangle yellow

canvas.create_rectangle(10, 50, 110, 100, outline="red") # makes border red

canvas.create_rectangle(10, 50, 110, 100, width=5) # makes border 5 pixels wide

canvas.create_rectangle(10, 50, 110, 100, width=0) # removes border



Drawing multiple shapes
If we draw more than one shape, the shapes can overlap! Shapes which are drawn later are 
drawn on top.

def draw(canvas, width, height):

canvas.create_rectangle(  0,   0, 150, 150, fill="yellow")

canvas.create_rectangle(100,  50, 250, 100, fill="orange", width=5)

canvas.create_rectangle( 50, 100, 150, 200, fill="green",

outline="red", width=3)

canvas.create_rectangle(125,  25, 175, 190, fill="purple", width=0)



Calculating the center
Often we want to draw shapes based on a center point, a shape width, and a shape height.

To do this, we need to calculate the left, top, right, and bottom coordinates using this 
information.

(x, y)

w

h

(x – w/2, y – h/2) (x + w/2, y – h/2)

(x – w/2, y + h/2) (x + w/2, y + h/2)

centerX, centerY = 200, 200

rectWidth, rectHeight = 300, 80

left = centerX - rectWidth/2

top = centerY - rectHeight/2

right = centerX + rectWidth/2

bottom = centerY + rectHeight/2

canvas.create_rectangle(left, top, right, bottom)



Adjusting Size Based on Window Size
We know the window's height and width in draw() (as they are provided as parameters), so we 
can draw objects proportionally to the window, so they resize appropriately.

def draw(canvas, width, height):

squareSize = min(width, height)

canvas.create_rectangle(width/2 - squareSize/2,

height/2 - squareSize/2,

width/2 + squareSize/2,

height/2 + squareSize/2,

fill="red")



Drawing an oval
Of course, we can draw more shapes than just rectangles. First, to draw an oval, use 
create_oval. This function uses the same parameters as create_rectangle, where the 
coordinates mark the oval's bounding box. create_oval has the same optional parameters as 
create_rectangle.

canvas.create_oval(10, 50, 110, 100)

(10, 50) (110, 50)

(10, 100) (110, 100)



Drawing a polygon
To draw a polygon with create_polygon, we specify the coordinates of each of the polygon's 
points, in perimeter order. The polygon can have as many points as needed, but will need at 
least three points to appear.

canvas.create_polygon(10, 10, 50, 150, 100, 50)

You can use the normal optional parameters with polygons, and you can also create a cool 
curved shape by setting smooth=1.

canvas.create_polygon(10, 10, 50, 150, 100, 50, smooth=1)



Drawing a line
Drawing a line with create_line is like drawing a polygon- include the coordinate for each point 
on the line where the direction changes. However, lines are allowed to only have two points.

canvas.create_line(10, 50, 200, 150, fill="blue")

canvas.create_line(10, 10, 50, 150, 100, 50, fill="red")

Lines can also be smoothed (though you should use create_arc to draw arcs), but do not have an 
outline color. Lines can also be given an arrow on the first point (arrow=FIRST), last point 
(arrow=LAST), or both (arrow=BOTH).

canvas.create_line(10, 50, 200, 150, arrow=BOTH)



Drawing text
To write text in the canvas, we use create_text. This takes the x, y coordinate of the center point of the 
text and can have the following optional parameters:

canvas.create_text(100, 100, text="Hello World!") # the text to be displayed. Not really optional...

canvas.create_text(100, 100, text="Hello World!", fill="red") # text color

canvas.create_text(100, 100, text="Hello World!", font="Arial 30 bold") # text font, size, and type

canvas.create_text(100, 100, text="Hello World!", anchor=NW) # anchors are used to specify where the

# coordinate is w.r.t the text. The default is CENTER; you can also use NW, N, NE, E, SE, S, SW, W

canvas.create_text(100, 100, text="Hello World!", width=50) # by default, text is all on one line.

# If width is set, the text length will be restricted & will automatically break into multiple lines.



Drawing images
If we want to use a pre-made image in Tkinter, we can load one in as a PhotoImage. This can be 
created with:

img = PhotoImage(file="sample.gif")

We can resize the image if needed, using subsample to make it smaller and zoom to make it bigger.

img = img.subsample(5) # make the image 5 times smaller

img = img.zoom(2) # make the image twice as large

Unfortunately, PhotoImages can only be .pgm, .ppm, and .gif files. For more filetypes, use the 
external module PIL.

http://www.pythonware.com/products/pil/


Drawing images
Once you've created an image, you can draw it with create_image. This method takes the x, y 
coordinates of the image and can have other optional parameters...

# the image to be displayed. not really optional...

canvas.create_image(200, 100, image=imageVar)

# the anchor point of the coordinate. Same as for text, default CENTER

canvas.create_image(200, 100, image=imageVar, anchor=N)

NOTE: images take a while to load, so they must be created in the runDrawing function, not in 
draw(). They should be initialized after root=Tk() but before draw().



Coding with Graphics
Now we have all the building blocks we need to make cool images!

Let's start by drawing flags: http://flagpedia.net/

http://flagpedia.net/


Building Blocks
We now have most of the building blocks of basic programs: numbers, text, Booleans, variables, 
functions, and graphics.

Next, let's talk about how we figure out which blocks to use and when...



Algorithmic Thinking



Problem Solving
Programming in general involves determining how to solve problems with algorithms. An 
algorithm is a defined process that accomplishes some task. When we write Python code, we 
are encoding the process into a language the computer can understand.

Doing problem solving in programming can be broken down into the following steps:

1. Understand the problem

2. Devise a plan

3. Carry out the plan

4. Review your work



Understanding the Problem
The first step of problem solving is to thoroughly understand the problem. This sounds simple, but 
can be tricky. If you thoroughly understand a problem, you should understand what the function will 
do on any given input. This will involve carefully reading the WHOLE prompt.

Example: "Write the function eggCartons(eggs) that takes an integer number of eggs and returns the 
number of egg cartons needed to hold that many eggs." 

What should eggCartons(eggs) return when given the value...

◦ 12
◦ 13
◦ 1
◦ 11
◦ 32
◦ 0



Devising a Plan
Once you understand a problem, you need to devise an algorithm or plan for how to solve it. 
Depending on the prompt, you may need to translate a provided algorithm, apply a known 
algorithm pattern, or generate a new algorithm.

Translate: the prompt will describe an algorithm in regular language, and you will only need to 
translate it into Python. For example, "write a function that computes the distance between two 
points". You don't need to invent a distance algorithm- one already exists!

Apply: the prompt may be similar to a problem you've seen before; for example, "draw a flag 
with four vertical stripes". Then you can apply the previous code pattern and modify it as 
necessary.



Generating New Algorithms
The hardest problems are those in which the algorithm to solve the problem is not immediately 
familiar. In these cases, you will need to invent an algorithm yourself.

The best way to learn how to generate algorithms is to practice, as each problem has its own 
individual quirks. However, there are three helpful approaches you can use when generating 
algorithms: induction, top-down design, and human-computer.



Induction
In induction, you investigate several pairs of 
inputs and outputs to attempt to find a pattern. 
That pattern can then be generalized into an 
algorithm.

Example: Write the function 
nearestBusStop(street) that takes a non-negative 
int street number, and returns the nearest bus 
stop to the given street, where buses stop every 
8th street, including street 0, and ties go to the 
lower street. 

For example, the nearest bus stop to 12th street 
is 8th street, and the nearest bus stop to 13th 
street is 16th street.

Look at where the output changes based on the 
input, graph the results, and write the program.

4 – 0

5 – 8

8 – 8

12 – 8

13 – 16



Top-down design
In top-down design, you attempt to simplify the problem by breaking it down into multiple easier problems. You can then write code 
using helper functions that solves the main problem, then write each helper function individually to complete the work.

Example: Write the function threeLinesArea(m1, b1, m2, b2, m3, b3), that takes the slopes and intercepts of three lines and returns the 
area of the triangle that the three lines form when they intersect.

This initially seems difficult, because there isn't an immediate solution. However, we can make it simpler by breaking it down into parts 
and solving each part separately.

First: if we know the lengths of the three sides of the formed triangle, we can use Heron's Formula to calculate the area. So we need to 
find the lengths of the three sides.

Second: if we know the coordinates of the two ends of each side, we can use the distance formula to compute the length. So we need to
find the coordinates of the three points of the triangle.

Third: We can find the three points where the lines intersect by setting their x's and y's equal and solving the equation. Then we're done!

http://mathworld.wolfram.com/HeronsFormula.html


Human Computer
In human-computer, you solve a problem by walking through an example yourself, and taking note of 
what approach you personally use to find the answer. We often already have systematic approaches 
that we don't actively think of while doing actions!

Example: Write the function rectangularPegRoundHole(r, w, h), which returns True if a rectangular 
peg with width w and height h can pass through a round hole with radius r, and False otherwise.

Imagine trying to fit a rectangular object into a round hole. How can you tell if the peg will never be 
able to fit?

You check the longest part of the rectangle- the diagonal! Now you just need to calculate the length 
of that diagonal in code.



Carrying out the Plan
Once we've come up with a working algorithmic plan, we need to carry out the plan by 
translating it into code. As you become fluent in coding and Python, you'll be able to go straight 
from idea to code, but when you're starting out, this might be difficult!

If you're having trouble, it can help to start by writing the algorithm as a series of steps in plain 
language, either on paper or in comments. Your written algorithm should be clear and complete 
enough that another person could carry it out, and should distinctly label any information that 
needs to be remembered (that information will become variables later on).

Once your written algorithm is complete, you can translate one step at a time into code. If you 
don't know how to do a certain step in Python, you can check the course notes or ask a TA to 
find the appropriate programming tool, then experiment with that tool in the interpreter until 
you understand it.



Reviewing your work
Finally, once your program is written, you need to review your work by running and testing your 
code. This isn't like spot-checking your work on a written assignment, because the computer can 
already tell you when something is wrong!

Remember the input-output pairs we considered in Step 1? We can now turn those into test 
cases, then run the program on the test cases to make sure it's working appropriately. When a 
test case fails, we can use debugging to determine what's going wrong. Once all the test cases 
are passing, you should read your program one more time to make sure it makes sense, then 
submit it for final review.

We'll go over testing and debugging in more depth next week. Let's practice problem solving...



Example – Flag of Denmark
How would we go about programming 
the Flag of Denmark?

Use the strategies we just discussed to 
figure out an algorithmic plan!



Today's Learning Goals
Use the tkinter library to construct graphics with programming

Solve unfamiliar problems using algorithmic thinking


