
Advanced #1: 
Programming Languages
SAMS SENIOR CS TRACK



Learning Goals
Understand the different types of imperative and declarative programming paradigms

Recognize other variations in programming language design have strengths and weaknesses

Identify the programming paradigms of other languages

Most of the information in this slide deck was developed based on Wikipedia's entry on 
Programming Paradigms. If you're interested, you can read more there!

https://en.wikipedia.org/wiki/Programming_paradigm


Imperative vs. 
Declarative



Programming Paradigms
There are many different ways to approach programming. To start, we'll examine two main 
categories of programming languages.

Imperative programming languages are state-based. In programming, we think of state as the 
data that a program processes, the current values held in the computer's memory that can be 
accessed or changed. State-based programming revolves around the state and how to change it.

Declarative programming languages are property-based. These languages avoid changing the 
state of the program; instead, they declare what the result of a computation should look like. 
These properties are used to perform actual computation.



Imperative Programming
When programming imperatively, you usually focus on how the program should change the 
state over time. This is done with direct commands on variables/data structures that might 
update over time.

There are many different sub-categories of imperative programming languages. Two common 
ones are procedural and object-oriented programming, which are two different ways to 
organize the commands of programming.



Imperative – Procedural
Procedural programming revolves around describing different procedures (or functions) that can 
be performed on data, then calling those procedures on data directly.

Most of the programming we do in Python is procedural, though Python can be used in other 
programming paradigms as well. A common procedural language is C.



Imperative – Object-Oriented
Object-oriented programming still uses functions, but groups the functionality of the program 
into different objects to improve organization.

A classic theme in object-oriented programming is inheritance- build objects to inherit features 
and methods from each other, so that repeated work can be minimized.

In Python, we can create and use objects and inheritance. Read more here and here. Another 
common object-oriented language is Java.

https://docs.python.org/3/tutorial/classes.html
http://krivers.net/15112-s19/notes/notes-oop.html


Declarative Programming
When programming declaratively, you focus on what the result should look like, in terms of its 
properties. When the computation is expressed directly, the programming language itself can 
evaluate the code to determine what the result should be.

Many declarative languages aim to avoid changing state, and instead create new state when
needed. This is done to avoid side effects, and to make it possible to mathematically prove when 
code works.

There are many different subfields of declarative programming. We'll look into two- functional
and logic programming.



Declarative – Functional
Functional programming uses functions, like procedural programming. However, these functions 
do not track state; they derive the output directly based on the input.

This is often done by stating the returned value recursively, where the function calls itself on a 
different input. This is similar to a proof by induction- if we can derive f(x-1), we can derive f(x). 
Recursion will be next week's advanced topic.

We can write functional code in Python as long as we avoid changing state. This is easiest to do
by using lambda, filter, map, and reduce; you can read more about these functions here. 
Another common functional programming language is Haskell.

http://krivers.net/15112-s19/notes/notes-functional-programming.html


Declarative - Logic
Logic programming sets up a series of logical facts and rules, and uses those facts and rules to 
derive new ideas. When the user sets the system a goal, the system attempts to achieve the goal 
by chaining together the facts and rules already known.

This is mainly used in mathematical settings, to derive new proofs. However, math can be 
applied in many fields of computer science, especially machine learning. This is also useful when 
attempting to find a solution that meets a certain set of constraints.

Python does not directly support logic programming, but there are external packages which can 
be imported in Python to perform these kinds of operations. A common logic programming 
language is Prolog.

https://github.com/logpy/logpy


Language Variations



Other Variations
Beyond Imperative and Declarative language styles, there are dozens of other models that 
programming languages can use to support different programming tasks. A list can be found 
here.

Beyond that, programming languages make many choices about how to represent syntax and 
process code. All of this variation means that there are hundreds of programming languages to 
choose from!

We'll look at a few different options that you might have noticed when comparing Python to a 
language you've learned before: compiled vs. dynamic, weakly typed vs. strongly typed, and 
text vs. block.

https://en.wikipedia.org/wiki/Programming_paradigm


Compiled vs. Dynamic
When a computer runs a program, it needs to parse and compile the program before it can 
compute the result. This is the process the computer uses to understand how code should be
executed at the machine level, where commands eventually turn into gate-level operations.

Some languages are compiled- the code must be fully compiled before it can be run. 
Compilation will often pre-perform some operations, to optimize how quickly the program runs 
when the user begins the process. Java is a common compiled language.

Other languages are dynamic- they re-compile the code every time the user runs it, and can add
certain computations in as the program runs. These programs are often slower, as the computer 
can not pre-calculate results, but they also allow for more experimentation. Python is a common 
dynamic language.



Weakly vs. Strongly Typed
Most programming languages have a concept of data types. We've already gone over ints, 
floats, strings, and Booleans in this class.

Some languages have weak typing. Every variable has a type at runtime, but the type of the 
variable can change as the variable itself is updated with new values. This allows for more 
flexibility during code-writing. Python is a common weakly-typed language.

Some languages have strong typing. Variables must be assigned a type when they are defined, 
and the type may not change during runtime. Type changes are considered runtime errors in 
these languages. This prevents bugs caused by accidental type changes during computation. Java 
is a common strongly-typed programming language.



Text vs. Block
In all programming languages, the user must communicate the program to the computer in 
some way. But the modality used for communication can be different across different languages!

Most languages use text, like Python. The user must type out the text of the program, then the 
program parses the text into tokens and evaluates it. The syntax of the text varies across 
languages.

Some languages use blocks instead of text. These languages specify all of the different
commands of the language into visual blocks, and the user can drag-and-drop them into an 
environment, arranging and nesting them as needed to achieve functionality. These blocks 
directly represent tokens, so syntax errors are rarer.



Bonus Task



Bonus Task
Choose a programming language that is not one of the following: Python, Java, HTML/CSS, Javascript. 
This should preferably be a language you have not used before. You can find a list of programming 
languages here: https://en.wikipedia.org/wiki/List_of_programming_languages

In a .txt file or as a comment in a .py file, answer the following questions:

- What language did you choose?

- Is your language mostly imperative, declarative, both, or neither?

- Which programming paradigm best describes your language?

- Describe a variation (like weak/strong typing, etc.) that makes this language interesting.

Submit your answer to the bonus1 assignment on Autolab by noon on Friday 7/5.

https://en.wikipedia.org/wiki/List_of_programming_languages

