
Advanced #2: Recursion
SAMS SENIOR CS TRACK

Learning Goals
Understand what recursion means

Identify base and recursive cases in code

Write code using recursive calls

What is Recursion?
The core idea of recursion is that you can
manipulate the control flow of a program by
calling a function from itself.

This lets you repeat the same set of actions
over and over again, similar to the behavior of
a while loop. But since the repetition is
managed in a function call, we can create
control flow patterns that are difficult or even
impossible to produce with loops.

How does Recursion work?
To write recursive code, we need to split up the
problem we're solving into at least two parts:

The recursive case will solve the problem by
calling the function again on a slightly smaller
version of the input.

The base case will solve the problem for a
defined input using no recursion at all.

If we set these up properly, the code will not run
forever.

def recursiveFunction():

if (this is the base case):

do something non-recursive

else:

do something recursive

Seriously, how does it work?
This may seem like magic, but there's a logic
behind how the code works.

Say you call the function to the right on the
number 10. When it calls itself again, it will use
the input 9, then 8, then 7... all the way down to
1.

At input 1, the function will return a value- also
1. That value will be passed back to the prior call,
which will compute a result (2) and pass it back,
etc. This eventually results in the original call
getting a result, so it can compute its own result.

def factorial(n):

if (n < 2):

return 1

else:

return n * factorial(n - 1)

The base case is important!
The only reason why recursion can work is
because of the base case. If the code recurses
every time it is called, it will keep recursing
until the computer runs out of memory. This is
called a RecursionError.

To avoid RecursionErrors, make sure you
always have a base case, and make sure that
you're always moving the input closer to that
base case!

def factorial(n):

return n * factorial(n - 1)

Infinite Recursion vs. Recursion w/ Base Case

Multiple Base Cases
We can include multiple base
cases instead of one.

This is useful if we want to handle
multiple possible stopping points.

Note: the code to the right uses
lists, a data structure we'll learn
about next week.

def interleave(list1, list2):

if (len(list1) == 0):

return list2

elif (len(list2) == 0):

return list1

else:

return [list1[0] , list2[0]] + \

interleave(list1[1:], list2[1:])

Multiple Recursive Cases
We can also include multiple
recursive cases when needed.

This is useful if we want to change
the behavior of the function based
on the input given.

def power(base, expt):

if (expt == 0):

return 1

elif (expt < 0):

return 1.0 / power(base, abs(expt))

else:

return base * power(base, expt-1)

Multiple Recursive Calls
Finally, we can include more than one
recursive call in the function to change the
function's behavior.

Functions with one recursive call can usually
be mimicked by loops. But multiple recursive
calls let you manage control flow in more
advanced ways, by repeating code at as many
levels as you need.

Multiple recursive calls can be used to create
cool images, like fractals, by repeating graphic
algorithms at multiple points.

Multiple Call Example: Fibonacci
The Fibonacci Sequence is a famous example
of a multiple-call recursive algorithm.

In this sequence, each number is generated by
adding the two numbers that came before it.
The base case of the sequence is the starting
two numbers- 1 and 1.

This sequence is known for its relation to the
golden ratio, which commonly appears in
nature, mathematics, and architecture.

def fib(n):

if (n < 2):

return 1

else:

return fib(n-1) + fib(n-2)

Multiple Call Example: Mergesort
Another common example is mergesort, an algorithm
which is used to sort a list of elements.

Mergesort works by recursively sorting the two halves
of the list, then merging the two back together. This
algorithm is known for being more efficient then
many simpler sorting algorithms.

You can find a visualization of the algorithm here:
http://math.hws.edu/eck/js/sorting/xSortLab.html

def merge(A, B):

if ((len(A) == 0) or (len(B) == 0)):

return A+B

else:

if (A[0] < B[0]):

return [A[0]] + merge(A[1:], B)

else:

return [B[0]] + merge(A, B[1:])

def mergeSort(L):

if (len(L) < 2):

return L

else:

mid = len(L)//2

left = mergeSort(L[:mid])

right = mergeSort(L[mid:])

return merge(left, right)

http://math.hws.edu/eck/js/sorting/xSortLab.html

Learning Goals
Understand what recursion means

Identify base and recursive cases in code

Write code using recursive calls

Want to learn more? Try reading the notes here and here

http://krivers.net/15112-s19/notes/notes-recursion.html
http://krivers.net/15112-s19/notes/notes-recursive-applications.html

Bonus Task

Bonus Task
Write the function powerSum(n, k) that takes two possibly-negative integers n and k and returns
the so-called power sum: 1**k + 2**k + ... + n**k. If n is negative, return 0. Similarly, if k is
negative, return 0.

You must use recursion to solve this problem; for loops, while loops, and the function sum() are
not allowed.

Submit your answer to the bonus2 assignment on Autolab by noon on Friday 7/12.

Hint: Don't forget your base case!

