
#7: Aliasing, 2D Lists,
and Objects
SAMS SENIOR CS TRACK

Last Time
Utilize lists as data structures when writing programs

Use indexing and slicing on strings while writing functions

Understand the difference between mutable and immutable datatypes

Use string and list methods while writing programs

Today's Learning Goals
Understand how aliasing works with lists and other mutable objects

Build lists of multiple dimensions

Build objects with properties and methods

Aliasing

Reminder: Lists are Mutable
Last week, we learned that lists are mutable-
the values in them can be changed directly.

This is possible because we aren't actually
storing the list value directly inside its variable.
Instead, the variable contains a reference to
the list. We can change the list while leaving
the reference the same.

This is why we can call lst.append(item)
without needing to set the call equal to a
value!

Side Effects...
The mutable nature of lists has an important side effect- copying variables works differently
than with non-mutable values.

Normally, if we make a copy of a string or number, the copy is disconnected from the original
value:

a = "foo"

b = a

a = a + "foo"

print(a, b)

Side Effects...
The mutable nature of lists has an important side effect- copying variables works differently
than with non-mutable values.

But if I copy a list, we'll get an unexpected result...

a = [1, 2, 3]

b = a

a.append(4)

print(a, b)

Aliasing
List copying is broken because our variables are aliased. They both store the same reference,
where each reference points to the same list. Changing the list doesn't change the reference.

We can make what's going on clearer by visualizing the code's execution.

Example here at Python Tutor: https://goo.gl/aZwfcW

https://goo.gl/aZwfcW

Exercise: Aliasing
Predict what the following code will print. When we run the code, check your results.

x = ["a", "b", "c"]

y = x

s = "foo"

x.append(s)

s = s + "bar"

print("x", x)

print("y", y)

print("s", s)

Function Call Aliasing
When we call a list in a function, the parameter is an alias of the originally provided list. This lets us write functions that are
destructive- they change the provided value instead of returning.

def doubleValues(lst):

for i in range(len(lst)):

lst[i] = lst[i] * 2

a = [1, 2, 3]

print("before", a)

print("result", doubleValues(a))

print("after", a)

Destructive vs. Non-Destructive
If we want to make a list function that is non-destructive, we make and return a new list instead.

def doubleValues(lst):

result = []

for i in range(len(lst)):

result.append(lst[i] * 2)

return result

a = [1, 2, 3]

print("before", a)

print("result", doubleValues(a))

print("after", a)

Built-in Functions
Built-in list functions can be destructive or nondestructive.

Need to add a single element?

lst.append(item) is destructive; lst = lst + [item] is non-destructive.

Need to remove the last element?

lst.pop() is destructive; lst = lst[:-1] is non-destructive.

If you aren't sure whether a function is destructive or nondestructive, pay attention to whether
it changes the list and whether it requires an assignment.

Exercise: Lists in Functions
We want to write a function replace(lst, oldItem, newItem) that replaces all instances
of oldItem in the list with newItem.

How would we implement this function destructively?

How would we implement it non-destructively?

2D Lists

Multi-dimensional Lists
Reminder: lists can hold any type of data. That includes more lists!

We often talk about creating two-dimensional lists. These are just lists that contain one-
dimensional (regular) lists. They're useful for storing information that comes in grids (think
pixels, game boards, spreadsheets...)

grid = [["city", "state"],

["Pittsburgh", "PA"],

["Baltimore", "MD"],

["New Orleans", "LA"]]

2D List Indexing
When indexing into a multi-dimensional list, you index from the outside in.

With 2D lists, we refer to rows (the inner lists) and columns (the indices within the list). This lets
us treat 2D lists like data tables.

lst = [["row 0 col 0", "row 0 col 1"],

["row 1 col 0", "row 1 col 1"]]

print(lst[1]) # ["row 1 col 0", "row 1 col 1"]

print(lst[1][0]) # "row 1 col 0"

2D List Iteration
Likewise, when iterating over a multi-dimensional list, we use multiple nested loops. For 2D
lists, we first iterate over the rows (the inner lists), then the columns (the elements).

lst = [["a", "b"], ["c", "d"]]

for row in range(len(lst)):

for col in range(len(lst[row])):

print(lst[row][col])

Exercise: 2D Lists
We want to write a function that takes a 2D list of one-character strings and a word, and returns
the [row, col] index of the starting character of the word if that word can be found in an adjacent
string of characters in the list, or None otherwise.

Basically, we want to write a word search solver!

https://thewordsearch.com/

Testing wordSearch
def testWordSearch():

board = [['d', 'o', 'g'],

['t', 'a', 'c'],

['o', 'a', 't'],

['u', 'r', 'k']]

print(wordSearch(board, "dog")) # [0, 0]

print(wordSearch(board, "cat")) # [1, 2]

print(wordSearch(board, "tad")) # [2, 2]

print(wordSearch(board, "cow")) # None

Objects

Data Structures
So far we've learned about two different types of data structures- strings and lists.

There are hundreds of other types of data structures we can design! Sets, dictionaries, arrays,
trees, graphs, heaps, and more...

These all share two things in common:

- All hold a certain kind of data (usually in different formats)

- All can have certain methods performed on them

Objects and Classes
The most generic kind of data structure is called an object. An object has no pre-specified data or
methods; you have to specify them yourself!

We can design a new type of an object by writing a class. A class is like a template that describes how
an object should be structured. An object, or instance, is then a specific item of that class.

class Dog(object):

define properties and methods of a generic dog here

pass

fido = Dog() # fido is now a specific instance of the class

Attributes and Methods
When defining a class, we need to determine what attributes and methods the class should
have. Attributes hold the data that the object represents; methods describe what the object can
do and what can be done to it.

We store attributes in variables, and methods in functions. For example, our Dog class might
have the attribute breed, and the method speak().

We also need to give each class a constructor, which is called when an instance is first created.
The constructor lets us set up the initial data in the object. In Python, the constructor must be
called __init__.

Self
When defining the attributes and methods a
class has, we need to refer to the variable self.
This variable will be replaced with the specific
instance of the class being referred to when the
method is called or the attribute is accessed.

Think of it this way: a generic dog can't speak(),
and doesn't have a breed. But your specific dog
can speak() and has its own specific breed.

We then refer to an instance's attributes and
methods with <instance>.<attribute> or
<instance>.<method>(), like we do with lists
and strings.

class Dog(object):

def __init__(self, breed):

self.breed = breed

def speak(self):

return "Bark!"

stella = Dog("husky mix")

print(stella.speak())

print("Breed:", stella.breed)

print(Dog.speak()) # will crash

Example: Book class
Say we want to program a catalog system for a library, and we want to design a Book class as a
new data structure. What attributes and methods should a Book have?

Today's Learning Goals
Understand how aliasing works with lists and other mutable objects

Build lists of multiple dimensions

Build objects with properties and methods

