
Advanced #3:
Dictionaries, Trees, and
Graphs
SAMS SENIOR CS TRACK

Learning Goals
Use dictionaries to represent mapping data with keys and values

Use trees to represent hierarchical data with parents and children

Use graphs to represent connected data with nodes and edges

Data Structures
There are many classic data structures in computer science. These are all different ways to
describe how data can be stored and acted upon. We've already seen two examples of data
structures: strings and lists.

The data structure you choose to store data changes how easily and efficiently you can perform
certain actions. Identifying the correct data structure to use can make writing a program much
easier.

We'll briefly go over three classic data structures: dictionaries, trees, and graphs.

Dictionaries

Abstract Dictionaries/Maps
A dictionary (or map) is a structure composed of two types of data: keys and values.

Dictionaries work in a similar way to lists, with one core difference: instead of mapping indexes
to values, dictionaries map specific keys to values. This lets us associate the keys and values in a
meaningful way.

Dictionaries exist in real life- think of an actual dictionary (which maps words to definitions), or a
phone book (which maps names to phone numbers). We generally use them when we want to
efficiently look up one kind of data based on a known value.

Dictionaries in Python
In Python, we use curly brackets to set up a dictionary:

d = { } # this is an empty dictionary, with no keys

To add a key/value pair to a dictionary, we use syntax similar to setting a value in a list index:

d[key] = value

Otherwise, dictionaries work very similarly to lists. We can access values with d[key], check if a key
is in a dictionary with in, and iterate over the keys of a dictionary with for key in dict .

Dictionary Example
With all three data types we learn in these slides, we'll try to solve the same problem. How can we find
and return the largest item in the data structure?

For dictionaries, we want to find and return the largest value (not key).

def findMax(d):

best = None

Iterate through all the keys, then check the values.

for key in d:

Set the first value we find to best automatically

if best == None or d[key] > best:

best = d[key]

return best

Trees

Abstract Trees
A tree is a data structure that is composed of nodes. Nodes represent individual values (like the
keys in a dictionary or values in a list).

In a tree, we organize the nodes hierarchically- nodes can have parents (which are connected
directly above them in the tree) and children (which are connected directly below them). By
organizing many nodes, we can create a many-layered tree.

Trees (the data structure) exist in real life too. An obvious example is a family tree- each person
has two parents, and 0+ children. Another example is the file system in your computer- folders
can be contained in a folder, and can also hold their own folders.

Trees Don't have Cycles
We can't arrange nodes however we want in a
tree- there are rules to follow!

First: the definition of a tree is that it contains
no cycles. If a node A is the parent of a node B,
then B cannot be a parent of A, nor can B have
any children that are the parent of A.

This means that we'll always have at least one
node that has no parents- the root. We'll also
have at least one node that has no children- a
leaf. But we draw our trees upside-down!

In the example above, 9 is the root, and it has
4 and 17 as children. 3, 5, 7, and 20 are all
leaves- each has a parent, but no children.

Trees and Recursion
When we interact with trees, we need to
consider them as a recursive data structure.

Instead of thinking of a tree as a bunch of
connected nodes, think of it as a single node
that has a value and a list of trees that are that
node's children.

This is recursive because our definition of a
tree contains a tree! But it will work due to our
base case- the base case of a node with no
children. In this case, no other trees are
needed.

9

t1 t2

t0

Trees in Python
Trees are not a built-in datatype in Python. However, we can create a tree easily using an object.

class Tree(object):

def __init__(self, value, children):

self.value = value

self.children = children

t = Tree(9, [Tree(4, []), Tree(17, [])])

Alternatively, we could make a dictionary where the key is the root node and the value is a list of
dictionaries (each a child tree). But we'll use the object approach here.

Tree Example
Given a tree t, find and return the largest value.

def findMax(t):

Base case: no children. Return the current value instead.

We technically don't need to separate the base case, but we'll keep it for clarity.

if len(t.children) == 0:

return t.value

else:

best = t.value

Repeat the algorithm on each child to find the largest value among the children

for child in t.children:

tmp = findMax(child)

if tmp > best:

best = tmp

return best

Graphs

Abstract Graphs
A graph is a data structure composed of nodes and edges. Nodes represent values; edges
represent connections between nodes (and sometimes have values as well).

Unlike trees, graphs can have edges between any pair of nodes- in other words, cycles are
allowed. Trees are technically a sub-category of graphs, though they are often treated as a
separate data type entirely.

Graphs exist in many types of data in real life. Social networks are stored as graphs (where
people are nodes and friendships are edges); scheduling travel by flight is also stored as a graph
(cities/airports are nodes, scheduled flights between cities are edges). We use graphs when we
have data points with multiple connections.

Interacting with Graphs
When investigating the nodes of a graph, we'll
need to take repeated actions (as we did when
investigating the nodes of a tree). However,
graphs have no endpoint- if you're not careful,
you can keep looping forever!

In general, we avoid this by keeping track of
visited nodes, so we can avoid visiting the
same node multiple times.

Graphs in Python
As with trees, there is no built-in data structure
for graphs in Python. There are several ways we
can try to set up a graph.

One approach is to use objects. Instead of
representing nodes as having values and
children, each node can have a value and a list of
edges.

Another approach is to use a dictionary. Each
node's value can be a key, and each key's value
can be a list of nodes that node is connected to.
This is useful when we don't need to associate
edges with values, and when each node's value is
unique. We'll use this format for now.

g = { "A" : ["B"],

"B" : ["A", "C", "D"],

"C" : ["B", "D", "E"],

"D" : ["B", "C", "E"],

"E" : ["C", "D"]

}

Graphs with Edges
The dictionary approach works well when only
nodes have values. If your graph has edges with
values as well, then additional information needs to
be stored.

We can use an adjacency matrix to store this
information. The N nodes are given indexes from 0
to N-1; we can then make a 2D list where each i,j
position holds the value of the edge between nodes
i and j, if it exists, or None if there is no edge.

In the example to the right, we use 0 to indicate
same-node, 1 to indicate an edge, and None to
indicate no edge.

nodes = ["A", "B", "C", "D", "E"]

matrix = [# A, B, C, D, E

[0, 1, None, None, None], # A

[1, 0, 1, 1, None], # B

[None, 1, 0, 1, 1], # C

[None, 1, 1, 0, 1], # D

[None, None, 1, 1, 0] # E

]

Graph Example
Using the dictionary format, find the largest value that is connected to the starting value 0.
def findMax(g):

There are two classic algorithms for searching a graph: depth-first and breadth-first.
Here, we demonstrate breadth-first.
visited = [0]
i = 0
best = 0
while i < len(visited):

Check if the current value is the best
value = visited[i]
if value > best:

best = value
Go through the connected nodes, add any we haven't visited
for node in g[value]:

if node not in visited:
visited.append(node)

Then check the next node until we visit them all
i += 1

return best

Learning Goals
Use dictionaries to represent mapping data with keys and values

Use trees to represent hierarchical data with parents and children

Use graphs to represent connected data with nodes and edges

Want to learn more? Read more on dictionaries here, and read more on trees and graphs here.

Beyond the basics of implementation, there are tons of algorithms for advanced data structures,
especially graphs. If you're interested, read more here!

http://krivers.net/15112-s19/notes/notes-dictionaries.html
https://www.cs.cmu.edu/~15110-s18/lectures/Unit06PtC.pdf
https://en.wikipedia.org/wiki/Category:Graph_algorithms

Bonus Task

Bonus Task
For this bonus task, you'll need to find a dataset, download it, and write a simple script that loads and
stores that dataset into either a dictionary, tree, or graph, depending on which data type best fits the
data you want to analyze. We'll go over how to load files on Thursday.

You should then write a simple function that takes the data structure you created and prints it out in
some way, such that all of the data is visible.

You can find lots of interesting datasets at https://catalog.data.gov/dataset . Be careful- some of
these datasets are huge!

Submit your answer to the bonus3 assignment on Autolab by noon on Friday 7/19. You don't need to
upload the dataset itself- just put a comment with a link to it at the top of your file.

https://catalog.data.gov/dataset

